MyJournals Home  

RSS FeedsAlgorithms, Vol. 12, Pages 172: Practical Access to Dynamic Programming on Tree Decompositions (Algorithms)

 
 

16 august 2019 13:00:09

 
Algorithms, Vol. 12, Pages 172: Practical Access to Dynamic Programming on Tree Decompositions (Algorithms)
 


Parameterized complexity theory has led to a wide range of algorithmic breakthroughs within the last few decades, but the practicability of these methods for real-world problems is still not well understood. We investigate the practicability of one of the fundamental approaches of this field: dynamic programming on tree decompositions. Indisputably, this is a key technique in parameterized algorithms and modern algorithm design. Despite the enormous impact of this approach in theory, it still has very little influence on practical implementations. The reasons for this phenomenon are manifold. One of them is the simple fact that such an implementation requires a long chain of non-trivial tasks (as computing the decomposition, preparing it, …). We provide an easy way to implement such dynamic programs that only requires the definition of the update rules. With this interface, dynamic programs for various problems, such as 3-coloring, can be implemented easily in about 100 lines of structured Java code. The theoretical foundation of the success of dynamic programming on tree decompositions is well understood due to Courcelle’s celebrated theorem, which states that every MSO-definable problem can be efficiently solved if a tree decomposition of small width is given. We seek to provide practical access to this theorem as well, by presenting a lightweight model checker for a small fragment of MSO 1 (that is, we do not consider “edge-set-based” problems). This fragment is powerful enough to describe many natural problems, and our model checker turns out to be very competitive against similar state-of-the-art tools.


 
168 viewsCategory: Informatics
 
Algorithms, Vol. 12, Pages 173: Long Short-Term Memory Neural Network Applied to Train Dynamic Model and Speed Prediction (Algorithms)
Algorithms, Vol. 12, Pages 174: A Novel Blind Restoration and Reconstruction Approach for CT Images Based on Sparse Representation and Hierarchical Bayesian-MAP (Algorithms)
 
 
blog comments powered by Disqus


MyJournals.org
The latest issues of all your favorite science journals on one page

Username:
Password:

Register | Retrieve

Search:

Informatics


Copyright © 2008 - 2024 Indigonet Services B.V.. Contact: Tim Hulsen. Read here our privacy notice.
Other websites of Indigonet Services B.V.: Nieuws Vacatures News Tweets Nachrichten