MyJournals Home  

RSS FeedsRemote Sensing, Vol. 11, Pages 2750: Improving Forest Aboveground Biomass Estimation of Pinus densata Forest in Yunnan of Southwest China by Spatial Regression using Landsat 8 Images (Remote Sensing)

 
 

22 november 2019 15:03:19

 
Remote Sensing, Vol. 11, Pages 2750: Improving Forest Aboveground Biomass Estimation of Pinus densata Forest in Yunnan of Southwest China by Spatial Regression using Landsat 8 Images (Remote Sensing)
 


Uncertainties in forest aboveground biomass (AGB) estimates resulting from over- and underestimations using remote sensing data have been widely studied. The uncertainties may occur due to the spatial effects of the plot data. In this study, we collected AGB data from a total of 147 Pinus densata forest sample plots in Yunnan of southwestern China and analyzed the spatial effects on the estimation of AGB. An ordinary least squares (OLS) and four spatial regression methods were compared for the estimation using Landsat 8-OLI images. Through the spatial analysis of AGB and residuals of model predictions, it was found that the spatial autocorrelation and heterogeneity of the plot data could not be ignored. Compared with the OLS, the impact of the spatial effects on AGB estimation could be reduced slightly by the spatial lag model (SLM) and the spatial error model (SEM) and greatly reduced by the linear mixed effects model (LMM) and geographically weighted regression (GWR) based on the distributions of prediction residuals, global Moran’s I, and Z score. The spatial regression models had better performance for model fitting and prediction because of the reduction in overestimations and underestimations for the forests with small and large AGB values, respectively. However, the reductions in the overestimations and underestimations varied depending on the spatial regression models. The GWR provided the most accurate predictions with the largest R2 (0.665), the smallest root mean square error (34.507), and mean relative error (−9.070%) by greatly reducing the AGB interval for overestimations occurring and significantly increasing the threshold of AGB from 150 Mg/ha to 200 Mg/ha for underestimations. Thus, GWR offered the greatest potential of improving the estimation of Pinus densata forest AGB in Yunnan of southwestern China.


 
219 viewsCategory: Geology, Physics
 
Remote Sensing, Vol. 11, Pages 2747: Evaluation of Spaceborne GNSS-R Retrieved Ocean Surface Wind Speed with Multiple Datasets (Remote Sensing)
Remote Sensing, Vol. 11, Pages 2749: A Statistical Forest Reflectance Model (Remote Sensing)
 
 
blog comments powered by Disqus


MyJournals.org
The latest issues of all your favorite science journals on one page

Username:
Password:

Register | Retrieve

Search:

Physics


Copyright © 2008 - 2024 Indigonet Services B.V.. Contact: Tim Hulsen. Read here our privacy notice.
Other websites of Indigonet Services B.V.: Nieuws Vacatures News Tweets Nachrichten