MyJournals Home  

RSS FeedsMaterials, Vol. 12, Pages 3863: Influence of Effective Water-to-Cement Ratios on Internal Damage and Salt Scaling of Concrete with Superabsorbent Polymer (Materials)

 
 

22 november 2019 15:03:38

 
Materials, Vol. 12, Pages 3863: Influence of Effective Water-to-Cement Ratios on Internal Damage and Salt Scaling of Concrete with Superabsorbent Polymer (Materials)
 


Superabsorbent polymer (SAP) is attracting attention as a water-entraining admixture that reduces shrinkage or heals cracks in concrete. Cross-linked sodium polyacrylate SAPs, which are the most widely produced SAPs in the global market, are applicable as concrete admixtures. However, there have been contradictory results on the freeze–thaw resistance of concrete with SAPs. This study aims to clarify these results considering the water absorption behavior of SAPs in hardened concrete when effective water-to-cement ratios are different. Firstly, the absorbencies of one kind of cross-linked sodium polyacrylate SAP (SAP_SP) in pore solution and fresh mortar were measured by a tea bag test and flow test, respectively. Pore size distribution, capillary water absorption, and deformation during freeze–thaw cycles were analyzed for mortar samples with varying SAP_SP dosages. In the main tests, concrete samples with three different SAP_SPs/cement ratios (0.1%, 0.2%, and 0.3%) and a reference sample were prepared, and internal damage and salt scaling were measured under freeze–thaw cycles. Because SAP_SP absorbs water in fresh mixtures, additional water was added to the mixture considering the water absorbency of the SAP_SP. It was found that the used SAP_SPs prematurely release their stored water so the effective water-to-cement ratio was increased when a larger amount of SAP_SP was used. The higher effective water-to-cement ratio caused more internal damage and salt scaling due to the weaker cementitious matrix. In addition, mortar samples with a high SAP_SP content show a larger absorption of capillary water than the reference sample. The result can be interpreted by an observation that SAP_SP in air voids absorbs water and expands to relatively large capillary pores or neighbor air voids during the capillary water absorption process.


 
206 viewsCategory: Chemistry, Physics
 
Sensors, Vol. 19, Pages 5109: Detection of the Strains Induced in Murine Tibias by Ex Vivo Uniaxial Loading with Different Sensors (Sensors)
Materials, Vol. 12, Pages 3862: Facile Preparative Access to Bioactive Silicon Oxycarbides with Tunable Porosity (Materials)
 
 
blog comments powered by Disqus


MyJournals.org
The latest issues of all your favorite science journals on one page

Username:
Password:

Register | Retrieve

Search:

Physics


Copyright © 2008 - 2024 Indigonet Services B.V.. Contact: Tim Hulsen. Read here our privacy notice.
Other websites of Indigonet Services B.V.: Nieuws Vacatures News Tweets Nachrichten