MyJournals Home  

RSS FeedsMaterials, Vol. 12, Pages 3853: Study of Hybrid Nanoparticles Modified Epoxy Resin Used in Filament Winding Composite (Materials)

 
 

22 november 2019 15:03:38

 
Materials, Vol. 12, Pages 3853: Study of Hybrid Nanoparticles Modified Epoxy Resin Used in Filament Winding Composite (Materials)
 


Hybrid nanoparticles modified bisphenol A type epoxy/acid anhydride resin system applicable for filament winding forming process was studied using elastic core-shell rubber (CSR) nanoparticles with a large particle size (nearly 100 nm) and rigid nano-SiO2 particles with a small particle size (about 16 nm). The formulation, process properties, mechanical properties, thermal properties and microstructure of modified resin and its wound composite were studied. The results suggested that at the content of 10 phr CSR and 2 phr nano-SiO2, the resin system achieved optimum comprehensive performance. The viscosity of modified resin system was nearly 1000 mPa·s at 25 °C and service life was over 6 h. The resin tensile strength and modulus were 89 MPa and 3.5 GPa, while flexural strength and modulus reached 128 MPa and 3.2 GPa, respectively. The impact strength was 26.6 kJ·m−2, and the glass transition temperature (Tg) reached 145.9 °C. Modified epoxy resin enhanced the mechanical properties of carbon fiber reinforced wound composite. The tensile strength, tensile modulus and interlaminar shear strength were enhanced by 14.0%, 4.56% and 18.9%, respectively, compared with a composite based on unmodified resin. The above test results and scanning electron microscopy (SEM) analysis suggest that the hybrid nanoparticles modified resin system was suitable for carbon fiber wet filament winding products.


 
199 viewsCategory: Chemistry, Physics
 
Materials, Vol. 12, Pages 3854: Electrical Transport and Thermoelectric Properties of SnSe-SnTe Solid Solution (Materials)
Materials, Vol. 12, Pages 3852: Sustainable Lubrication Methods for the Machining of Titanium Alloys: An Overview (Materials)
 
 
blog comments powered by Disqus


MyJournals.org
The latest issues of all your favorite science journals on one page

Username:
Password:

Register | Retrieve

Search:

Physics


Copyright © 2008 - 2024 Indigonet Services B.V.. Contact: Tim Hulsen. Read here our privacy notice.
Other websites of Indigonet Services B.V.: Nieuws Vacatures News Tweets Nachrichten