MyJournals Home  

RSS FeedsSustainability, Vol. 12, Pages 686: New Computational Artificial Intelligence Models for Generating Synthetic Formation Bulk Density Logs While Drilling (Sustainability)

 
 

17 january 2020 15:03:03

 
Sustainability, Vol. 12, Pages 686: New Computational Artificial Intelligence Models for Generating Synthetic Formation Bulk Density Logs While Drilling (Sustainability)
 




Synthetic well log generation using artificial intelligence tools is a robust solution for situations in which logging data are not available or are partially lost. Formation bulk density (RHOB) logging data greatly assist in identifying downhole formations. These data are measured in the field while drilling by using a density log tool in the form of either a logging while drilling (LWD) technique or (more often) by wireline logging after the formations are drilled. This is due to operational limitations during the drilling process. Therefore, the objective of this study was to develop a predictive tool for estimating RHOB while drilling using an adaptive network-based fuzzy interference system (ANFIS), functional network (FN), and support vector machine (SVM). The proposed model uses the mechanical drilling constraints as feeding input parameters, and the conventional RHOB log data as an output parameter. These mechanical drilling parameters are usually measured while drilling, and their responses vary with different formations. A dataset of 2400 actual datapoints, obtained from a horizontal well in the Middle East, were used to build the proposed models. The obtained dataset was divided into a 70/30 ratio for model training and testing, respectively. The optimized ANFIS-based model outperformed the FN- and SVM-based models with a correlation coefficient (R) of 0.93, and average absolute percentage error (AAPE) of 0.81% between the predicted and measured RHOB values. These results demonstrate the reliability of the developed ANFIS model for predicting RHOB while drilling, based on the mechanical drilling parameters. Subsequently, the ANFIS-based model was validated using unseen data from another well within the same field. The validation process yielded an AAPE of 0.97% between the predicted and actual RHOB values, which confirmed the robustness of the developed model as an effective predictive tool for RHOB.


Del.icio.us Digg Facebook Google StumbleUpon Twitter
 
122 viewsCategory: Ecology
 
Sustainability, Vol. 12, Pages 687: An Integrated Multi-Criteria and Multi-Objective Optimization Approach for Establishing the Transport Plan of Intercity Trains (Sustainability)
Sustainability, Vol. 12, Pages 696: Bacterial Concrete as a Sustainable Building Material? (Sustainability)
 
 
blog comments powered by Disqus


MyJournals.org
The latest issues of all your favorite science journals on one page

Username:
Password:

Register | Retrieve

Search:

Ecology

Use these buttons to bookmark us:
Del.icio.us Digg Facebook Google StumbleUpon Twitter


Valid HTML 4.01 Transitional
Copyright © 2008 - 2020 Indigonet Services B.V.. Contact: Tim Hulsen. Read here our privacy notice.
Other websites of Indigonet Services B.V.: Nieuws Vacatures News Tweets Travel Photos Nachrichten Indigonet Finances Leer Mandarijn