MyJournals Home  

RSS FeedsSustainability, Vol. 12, Pages 772: Nitrogen Pulse and Competition Affects Nitrogen Metabolism in Invasive Weed (Amaranthus retroflexus) and Native Crop (Glycine max) (Sustainability)

 
 

21 january 2020 19:00:34

 
Sustainability, Vol. 12, Pages 772: Nitrogen Pulse and Competition Affects Nitrogen Metabolism in Invasive Weed (Amaranthus retroflexus) and Native Crop (Glycine max) (Sustainability)
 


Nitrogen (N) pulse is a frequent event in agroecosystems caused by fertilization. Understanding the responses of nitrogen metabolisms in native crops and invasive weeds to N pulses is essential in investigating the invasive mechanism of invasive weeds. A pot experiment was carried out to study the impacts of N pulse and the interspecific competition on nitrogen metabolism of an invasive weed (Amaranthus retroflexus) and a native crop (Glycine max); the plants were applied with an equal amount of N in three N pulse treatments, i.e., sole-summit treatment (SS) with N only applied on the seeding date, double-summit treatment (DS) with twice N applied (the fertilizer was applied on both the seeding date and the flowering date), and no-summit treatment (NS) in which N was applied evenly during the experiment. The results showed that A. retroflexus increased the nitrate reductase (NR) activity more than G. max (except for the roots) in the early growing stage, and increased the glutamine synthetase (GS) and glutamate dehydrogenase (GDH) activities in stem more than G. max in SS and DS treatments during the last two growing stages, however, the advantages were far weaker in the NS treatment. Interspecific competition had negative effects on the nitrogen metabolism of the two species among most of the sample times, and the effects of interspecific competition exerted a tissue-specific influence on nitrogen metabolism in the two species. A. retroflexus switched to reproductive growth earlier in SS treatment than in the DS and NS treatments when it was grown in mixed planting, and its height was the lowest in the NS treatment, so the competitive ability of A. retroflexus was higher in the SS and DS treatments than in the NS treatment, while SS treatment was the common application method of N fertilizer in the G. max farmland in China. Thus, the results of this study suggest that, if the farmer changed the N fertilizer application mode to a constant multiple fertilization mode, the competitive capacity of A. retroflexus will be reduced.


 
182 viewsCategory: Ecology
 
Sustainability, Vol. 12, Pages 776: Planning and Simulation of Intermodal Freight Transport on International Networks. Hub and Spoke System in Euro-Mediterranean Area (Sustainability)
Sustainability, Vol. 12, Pages 775: Social Trust and Open Innovation in an Informal Economy: The Emergence of Shenzhen Mobile Phone Industry (Sustainability)
 
 
blog comments powered by Disqus


MyJournals.org
The latest issues of all your favorite science journals on one page

Username:
Password:

Register | Retrieve

Search:

Ecology


Copyright © 2008 - 2024 Indigonet Services B.V.. Contact: Tim Hulsen. Read here our privacy notice.
Other websites of Indigonet Services B.V.: Nieuws Vacatures News Tweets Nachrichten