MyJournals Home  

RSS FeedsIJMS, Vol. 21, Pages 726: Effects of Dietary Anaplerotic and Ketogenic Energy Sources on Renal Fatty Acid Oxidation Induced by Clofibrate in Suckling Neonatal Pigs (International Journal of Molecular Sciences)

 
 

22 january 2020 14:02:41

 
IJMS, Vol. 21, Pages 726: Effects of Dietary Anaplerotic and Ketogenic Energy Sources on Renal Fatty Acid Oxidation Induced by Clofibrate in Suckling Neonatal Pigs (International Journal of Molecular Sciences)
 


Maintaining an active fatty acid metabolism is important for renal growth, development, and health. We evaluated the effects of anaplerotic and ketogenic energy sources on fatty acid oxidation during stimulation with clofibrate, a pharmacologic peroxisome proliferator-activated receptor α (PPARα) agonist. Suckling newborn pigs (n = 72) were assigned into 8 dietary treatments following a 2 × 4 factorial design: ± clofibrate (0.35%) and diets containing 5% of either (1) glycerol-succinate (GlySuc), (2) tri-valerate (TriC5), (3) tri-hexanoate (TriC6), or (4) tri-2-methylpentanoate (Tri2MPA). Pigs were housed individually and fed the iso-caloric milk replacer diets for 5 d. Renal fatty acid oxidation was measured in vitro in fresh tissue homogenates using [1-14C]-labeled palmitic acid. The oxidation was 30% greater in pig received clofibrate and 25% greater (p < 0.05) in pigs fed the TriC6 diet compared to those fed diets with GlySuc, TriC5, and Tri2MPA. Addition of carnitine also stimulated the oxidation by twofold (p < 0.05). The effects of TriC6 and carnitine on palmitic acid oxidation were not altered by clofibrate stimulation. However, renal fatty acid composition was altered by clofibrate and Tri2MPA. In conclusion, modification of anaplerosis or ketogenesis via dietary substrates had no influence on in vitro renal palmitic acid oxidation induced by PPARα activation.


 
220 viewsCategory: Biochemistry, Biophysics, Molecular Biology
 
IJMS, Vol. 21, Pages 725: The Influence of Inflammation on Anemia in CKD Patients (International Journal of Molecular Sciences)
IJMS, Vol. 21, Pages 728: Chromium-Induced Reactive Oxygen Species Accumulation by Altering the Enzymatic Antioxidant System and Associated Cytotoxic, Genotoxic, Ultrastructural, and Photosynthetic Changes in Plants (International Journal of Molecular Sciences)
 
 
blog comments powered by Disqus


MyJournals.org
The latest issues of all your favorite science journals on one page

Username:
Password:

Register | Retrieve

Search:

Molecular Biology


Copyright © 2008 - 2024 Indigonet Services B.V.. Contact: Tim Hulsen. Read here our privacy notice.
Other websites of Indigonet Services B.V.: Nieuws Vacatures News Tweets Nachrichten