MyJournals Home  

RSS FeedsRemote Sensing, Vol. 12, Pages 358: A Novel Approach for Predicting the Height of the Water-Flow Fracture Zone in Undersea Safety Mining (Remote Sensing)

 
 

22 january 2020 16:00:46

 
Remote Sensing, Vol. 12, Pages 358: A Novel Approach for Predicting the Height of the Water-Flow Fracture Zone in Undersea Safety Mining (Remote Sensing)
 


The height of the water-flow fracture zone (WFZ) is an important reference for designing the size of a waterproof crown pillar. Once the WFZ is connected with the sea, there will be catastrophic consequences, especially for undersea mining. This study suggests using a rotating forest (RoF) model to predict the height of the WFZ for the evaluation of the size of a waterproof crown pillar. To train and test the RoF model, five indicators with major influencing factors on undersea safety mining were determined, 107 field-measured mining datasets were collected, 75 (70%) datasets were used for training, and 32 (30%) datasets were used for model testing. At the same time, the random forest ensemble algorithm (RFR) and support vector machine (SVM) models were introduced for comparison and verification; in the end, the tested results were evaluated by RMSE (root-mean-square error) and R2. The comparison shows that the predicted results from the RoF model are significantly better than those from the RFR and SVM models. An importance analysis of the impact indicators shows that the mining height and depth have significant impacts on the prediction results. The development height of the WFZ in undersea safety mining was predicted via the RoF model. The predicted results via the RoF model were verified by field observations using panoramic borehole televiewers. The RoF prediction results are consistent with the observation results at all depths. Compared with the other two models, the RoF model has the smallest average absolute error at 2.87%. The results show that the RoF model can be applied to predict the height of the WFZ in undersea mining, which could be an effective way of minimizing the mineral resource waste in the study area and in other similar areas in the world under the premise of mine safety.


 
180 viewsCategory: Geology, Physics
 
Remote Sensing, Vol. 12, Pages 359: GNSS-RO Refractivity Bias Correction Under Ducting Layer Using Surface-Reflection Signal (Remote Sensing)
Remote Sensing, Vol. 12, Pages 357: Using Earth Observation for Monitoring SDG 11.3.1-Ratio of Land Consumption Rate to Population Growth Rate in Mainland China (Remote Sensing)
 
 
blog comments powered by Disqus


MyJournals.org
The latest issues of all your favorite science journals on one page

Username:
Password:

Register | Retrieve

Search:

Physics


Copyright © 2008 - 2024 Indigonet Services B.V.. Contact: Tim Hulsen. Read here our privacy notice.
Other websites of Indigonet Services B.V.: Nieuws Vacatures News Tweets Nachrichten