MyJournals Home  

RSS FeedsMolecules, Vol. 25, Pages 492: Redox-Modulations of Photophysical and Single-molecule Magnet Properties in Ytterbium Complexes Involving Extended-TTF Triads (Molecules)

 
 

23 january 2020 21:00:32

 
Molecules, Vol. 25, Pages 492: Redox-Modulations of Photophysical and Single-molecule Magnet Properties in Ytterbium Complexes Involving Extended-TTF Triads (Molecules)
 


The reaction between the 2,2’-benzene-1,4-diylbis(6-hydroxy-4,7-di-tert-butyl-1,3-benzodithiol-2-ylium-5-olate triad (H2SQ) and the metallo-precursor [Yb(hfac)3]2H2O led to the formation of a dinuclear coordination complex of formula [Yb2(hfac)6(H2SQ)]0.5CH2Cl2 (H2SQ-Yb). After chemical oxidation of H2SQ in 2,2’-cyclohexa-2,5-diene-1,4-diylidenebis(4,7-di-tert-butyl-1,3-benzodithiole-5,6-dione (Q), the latter triad reacted with the [Yb(hfac)3]2H2O precursor to give the dinuclear complex of formula [Yb2(hfac)6(Q)] (Q-Yb). Both dinuclear compounds have been characterized by X-ray diffraction, DFT optimized structure and electronic absorption spectra. They behaved as field-induced Single-Molecule Magnets (SMMs) nevertheless the chemical oxidation of the semiquinone to quinone moieties accelerated by a factor of five the relaxation time of the magnetization of Q-Yb compared to the one for H2SQ-Yb. The H2SQ triad efficiently sensitized the YbIII luminescence while the chemical oxidation of H2SQ into Q induced strong modification of the absorption properties and thus a quenching of the YbIII luminescence for Q-Yb. In other words, both magnetic modulation and luminescence quenching are reached by the oxidation of the protonated semiquinone into quinone.


 
250 viewsCategory: Biochemistry, Chemistry, Molecular Biology
 
Molecules, Vol. 25, Pages 497: Simple Syntheses of New Pegylated Trehalose Derivatives as a Chemical Tool for Potential Evaluation of Cryoprotectant Effects on Cell Membrane (Molecules)
Molecules, Vol. 25, Pages 493: Biological Activities of Gedunin--A Limonoid from the Meliaceae Family (Molecules)
 
 
blog comments powered by Disqus


MyJournals.org
The latest issues of all your favorite science journals on one page

Username:
Password:

Register | Retrieve

Search:

Molecular Biology


Copyright © 2008 - 2024 Indigonet Services B.V.. Contact: Tim Hulsen. Read here our privacy notice.
Other websites of Indigonet Services B.V.: Nieuws Vacatures News Tweets Nachrichten