MyJournals Home  

RSS FeedsIJERPH, Vol. 17, Pages 734: Predicting Water Cycle Characteristics from Percolation Theory and Observational Data (International Journal of Environmental Research and Public Health)

 
 

24 january 2020 02:00:29

 
IJERPH, Vol. 17, Pages 734: Predicting Water Cycle Characteristics from Percolation Theory and Observational Data (International Journal of Environmental Research and Public Health)
 


The fate of water and water-soluble toxic wastes in the subsurface is of high importance for many scientific and practical applications. Although solute transport is proportional to water flow rates, theoretical and experimental studies show that heavy-tailed (power-law) solute transport distribution can cause chemical transport retardation, prolonging clean-up time-scales greatly. However, no consensus exists as to the physical basis of such transport laws. In percolation theory, the scaling behavior of such transport rarely relates to specific medium characteristics, but strongly to the dimensionality of the connectivity of the flow paths (for example, two- or three-dimensional, as in fractured-porous media or heterogeneous sediments), as well as to the saturation characteristics (i.e., wetting, drying, and entrapped air). In accordance with the proposed relevance of percolation models of solute transport to environmental clean-up, these predictions also prove relevant to transport-limited chemical weathering and soil formation, where the heavy-tailed distributions slow chemical weathering over time. The predictions of percolation theory have been tested in laboratory and field experiments on reactive solute transport, chemical weathering, and soil formation and found accurate. Recently, this theoretical framework has also been applied to the water partitioning at the Earth’s surface between evapotranspiration, ET, and run-off, Q, known as the water balance. A well-known phenomenological model by Budyko addressed the relationship between the ratio of the actual evapotranspiration (ET) and precipitation, ET/P, versus the aridity index, ET0/P, with P being the precipitation and ET0 being the potential evapotranspiration. Existing work was able to predict the global fractions of P represented by Q and ET through an optimization of plant productivity, in which downward water fluxes affect soil depth, and upward fluxes plant growth. In the present work, based likewise on the concepts of percolation theory, we extend Budyko’s model, and address the partitioning of run-off Q into its surface and subsurface components, as well as the contribution of interception to ET. Using various published data sources on the magnitudes of interception and information regarding the partitioning of Q, we address the variability in ET resulting from these processes. The global success of this prediction demonstrated here provides additional support for the universal applicability of percolation theory for solute transport as well as guidance in predicting the component of subsurface run-off, important for predicting natural flow rates through contaminated aquifers.


 
220 viewsCategory: Medicine, Pathology, Toxicology
 
IJERPH, Vol. 17, Pages 735: Role of the Built and Online Social Environments on Expression of Dining on Instagram (International Journal of Environmental Research and Public Health)
IJERPH, Vol. 17, Pages 739: Study of the Differential Consequences of Neglect and Poverty on Adaptive and Maladaptive Behavior in Children (International Journal of Environmental Research and Public Health)
 
 
blog comments powered by Disqus


MyJournals.org
The latest issues of all your favorite science journals on one page

Username:
Password:

Register | Retrieve

Search:

Toxicology


Copyright © 2008 - 2024 Indigonet Services B.V.. Contact: Tim Hulsen. Read here our privacy notice.
Other websites of Indigonet Services B.V.: Nieuws Vacatures News Tweets Nachrichten