MyJournals Home  

RSS FeedsPhosphatidylinositol 3,4-bisphosphate synthesis and turnover are spatially segregated in the endocytic pathway [Lipids] (Journal of Biological Chemistry)

 
 

24 january 2020 10:01:19

 
Phosphatidylinositol 3,4-bisphosphate synthesis and turnover are spatially segregated in the endocytic pathway [Lipids] (Journal of Biological Chemistry)
 


Phosphoinositides play crucial roles in intracellular membrane dynamics and cell signaling, with phosphatidylinositol (PI) 3-phosphates being the predominant phosphoinositide lipids at endosomes and lysosomes, whereas PI 4-phosphates, such as phosphatidylinositol 4,5-bisphosphate (PI(4,5)P2), are enriched at the cell surface including sites of endocytosis. How PI 4-phosphates and PI 3-phosphates are dynamically interconverted within the endocytic pathway and how this is controlled in space and time remains poorly understood. Here, combining live imaging, genome engineering, and acute chemical and genetic manipulations, we found that local synthesis of PI(3,4)P2 by phosphatidylinositol 3-kinase C2? at plasma membrane clathrin-coated pits is spatially segregated from its hydrolysis by the PI(3,4)P2-specific inositol polyphosphate 4-phosphatase 4A (INPP4A). We observed that INPP4A is dispensable for clathrin-mediated endocytosis and is undetectable in endocytic clathrin-coated pits. Instead, we found that INPP4A partially localizes to endosomes and that loss of INPP4A in HAP1 cancer cells perturbs signaling via AKT kinase and mTOR complex 1. These results reveal a function for INPP4-mediated PI(3,4)P2 hydrolysis in local regulation of growth factor and nutrient signals at endosomes in cancer cells. They further suggest a model whereby synthesis and turnover of PI(3,4)P2 are spatially segregated within the endocytic pathway to couple endocytic membrane traffic to growth factor and nutrient signaling.


 
225 viewsCategory: Biochemistry
 
A 49-residue sequence motif in the C terminus of Nav1.9 regulates trafficking of the channel to the plasma membrane [Neurobiology] (Journal of Biological Chemistry)
Biochemical and structural analyses reveal that the tumor suppressor neurofibromin (NF1) forms a high-affinity dimer [Molecular Biophysics] (Journal of Biological Chemistry)
 
 
blog comments powered by Disqus


MyJournals.org
The latest issues of all your favorite science journals on one page

Username:
Password:

Register | Retrieve

Search:

Biochemistry


Copyright © 2008 - 2024 Indigonet Services B.V.. Contact: Tim Hulsen. Read here our privacy notice.
Other websites of Indigonet Services B.V.: Nieuws Vacatures News Tweets Nachrichten