MyJournals Home  

RSS FeedsSensors, Vol. 20, Pages 1011: Error-Aware Data Clustering for In-Network Data Reduction in Wireless Sensor Networks (Sensors)

 
 

14 february 2020 11:01:21

 
Sensors, Vol. 20, Pages 1011: Error-Aware Data Clustering for In-Network Data Reduction in Wireless Sensor Networks (Sensors)
 


A wireless sensor network (WSN) deploys hundreds or thousands of nodes that may introduce large-scale data over time. Dealing with such an amount of collected data is a real challenge for energy-constraint sensor nodes. Therefore, numerous research works have been carried out to design efficient data clustering techniques in WSNs to eliminate the amount of redundant data before transmitting them to the sink while preserving their fundamental properties. This paper develops a new error-aware data clustering (EDC) technique at the cluster-heads (CHs) for in-network data reduction. The proposed EDC consists of three adaptive modules that allow users to choose the module that suits their requirements and the quality of the data. The histogram-based data clustering (HDC) module groups temporal correlated data into clusters and eliminates correlated data from each cluster. Recursive outlier detection and smoothing (RODS) with HDC module provides error-aware data clustering, which detects random outliers using temporal correlation of data to maintain data reduction errors within a predefined threshold. Verification of RODS (V-RODS) with HDC module detects not only random outliers but also frequent outliers simultaneously based on both the temporal and spatial correlations of the data. The simulation results show that the proposed EDC is computationally cheap, able to reduce a significant amount of redundant data with minimum error, and provides efficient error-aware data clustering solutions for remote monitoring environmental applications.


 
150 viewsCategory: Chemistry, Physics
 
Sensors, Vol. 20, Pages 1013: Textile Electrocardiogram (ECG) Electrodes for Wearable Health Monitoring (Sensors)
[ASAP] Comparison Investigation on the Adsorption Affinity of DNA Molecules to the Gold Surface Based on the Kinetic and Thermodynamic Analysis of 4-Nitrophenol Reduction (Journal of Physical Chemistry C)
 
 
blog comments powered by Disqus


MyJournals.org
The latest issues of all your favorite science journals on one page

Username:
Password:

Register | Retrieve

Search:

Physics


Copyright © 2008 - 2024 Indigonet Services B.V.. Contact: Tim Hulsen. Read here our privacy notice.
Other websites of Indigonet Services B.V.: Nieuws Vacatures News Tweets Nachrichten