MyJournals Home  

RSS FeedsMaterials, Vol. 13, Pages 880: DECM: A Discrete Element for Multiscale Modeling of Composite Materials Using the Cell Method (Materials)

 
 

16 february 2020 16:02:49

 
Materials, Vol. 13, Pages 880: DECM: A Discrete Element for Multiscale Modeling of Composite Materials Using the Cell Method (Materials)
 


This paper presents a new numerical method for multiscale modeling of composite materials. The new numerical model, called DECM, consists of a DEM (Discrete Element Method) approach of the Cell Method (CM) and combines the main features of both the DEM and the CM. In particular, it offers the same degree of detail as the CM, on the microscale, and manages the discrete elements individually such as the DEM—allowing finite displacements and rotations—on the macroscale. Moreover, the DECM is able to activate crack propagation until complete detachment and automatically recognizes new contacts. Unlike other DEM approaches for modeling failure mechanisms in continuous media, the DECM does not require prior knowledge of the failure position. Furthermore, the DECM solves the problems in the space domain directly. Therefore, it does not require any dynamic relaxation techniques to obtain the static solution. For the sake of example, the paper shows the results offered by the DECM for axial and shear loading of a composite two-dimensional domain with periodic round inclusions. The paper also offers some insights into how the inclusions modify the stress field in composite continua.


 
168 viewsCategory: Chemistry, Physics
 
Materials, Vol. 13, Pages 881: Quantitatively Analyzing Pressure Induced Phase Transformation by Photoluminescence Spectra in Eu3+-doped Sodium Potassium Bismuth Titanate (Materials)
Sensors, Vol. 20, Pages 1075: A New Logging-While-Drilling Method for Resistivity Measurement in Oil-Based Mud (Sensors)
 
 
blog comments powered by Disqus


MyJournals.org
The latest issues of all your favorite science journals on one page

Username:
Password:

Register | Retrieve

Search:

Physics


Copyright © 2008 - 2024 Indigonet Services B.V.. Contact: Tim Hulsen. Read here our privacy notice.
Other websites of Indigonet Services B.V.: Nieuws Vacatures News Tweets Nachrichten