MyJournals Home  

RSS FeedsRemote Sensing, Vol. 12, Pages 665: Spatial Gap-Filling of ESA CCI Satellite-Derived Soil Moisture Based on Geostatistical Techniques and Multiple Regression (Remote Sensing)

 
 

18 february 2020 08:00:08

 
Remote Sensing, Vol. 12, Pages 665: Spatial Gap-Filling of ESA CCI Satellite-Derived Soil Moisture Based on Geostatistical Techniques and Multiple Regression (Remote Sensing)
 


Soil moisture plays a key role in the Earth’s water and carbon cycles, but acquisition of continuous (i.e., gap-free) soil moisture measurements across large regions is a challenging task due to limitations of currently available point measurements. Satellites offer critical information for soil moisture over large areas on a regular basis (e.g., European Space Agency Climate Change Initiative (ESA CCI), National Aeronautics and Space Administration Soil Moisture Active Passive (NASA SMAP)); however, there are regions where satellite-derived soil moisture cannot be estimated because of certain conditions such as high canopy density, frozen soil, or extremely dry soil. We compared and tested three approaches, ordinary kriging (OK), regression kriging (RK), and generalized linear models (GLMs), to model soil moisture and fill spatial data gaps from the ESA CCI product version 4.5 from January 2000 to September 2012, over a region of 465,777 km2 across the Midwest of the USA. We tested our proposed methods to fill gaps in the original ESA CCI product and two data subsets, removing 25% and 50% of the initially available valid pixels. We found a significant correlation (r = 0.558, RMSE = 0.069 m3m−3) between the original satellite-derived soil moisture product with ground-truth data from the North American Soil Moisture Database (NASMD). Predicted soil moisture using OK also had significant correlation with NASMD data when using 100% (r = 0.579, RMSE = 0.067 m3m−3), 75% (r = 0.575, RMSE = 0.067 m3m−3), and 50% (r = 0.569, RMSE = 0.067 m3m−3) of available valid pixels for each month of the study period. RK showed comparable values to OK when using different percentages of available valid pixels, 100% (r = 0.582, RMSE = 0.067 m3m−3), 75% (r = 0.582, RMSE = 0.067 m3m−3), and 50% (r = 0.571, RMSE = 0.067 m3m−3). GLM had slightly lower correlation with NASMD data (average r = 0.475, RMSE = 0.070 m3m−3) when using the same subsets of available data (i.e., 100%, 75%, 50%). Our results provide support for using geostatistical approaches (OK and RK) as alternative techniques to gap-fill missing spatial values of satellite-derived soil moisture.


 
182 viewsCategory: Geology, Physics
 
Remote Sensing, Vol. 12, Pages 666: Large-Scale, High-Resolution Mapping of Soil Aggregate Stability in Croplands Using APEX Hyperspectral Imagery (Remote Sensing)
Remote Sensing, Vol. 12, Pages 671: Phenological Characteristics of Global Ecosystems Based on Optical, Fluorescence, and Microwave Remote Sensing (Remote Sensing)
 
 
blog comments powered by Disqus


MyJournals.org
The latest issues of all your favorite science journals on one page

Username:
Password:

Register | Retrieve

Search:

Physics


Copyright © 2008 - 2024 Indigonet Services B.V.. Contact: Tim Hulsen. Read here our privacy notice.
Other websites of Indigonet Services B.V.: Nieuws Vacatures News Tweets Nachrichten