MyJournals Home  

RSS FeedsSensors, Vol. 20, Pages 1080: UAV Mission Planning with SAR Application (Sensors)

 
 

18 february 2020 16:02:44

 
Sensors, Vol. 20, Pages 1080: UAV Mission Planning with SAR Application (Sensors)
 


The paper presents the concept of mission planning for a short-range tactical class Unmanned Aerial Vehicle (UAV) that recognizes targets using the sensors it has been equipped with. Tasks carried out by such systems are mainly associated with aerial reconnaissance employing Electro Optical (EO)/Near Infra-Red (NIR) heads, Synthetic Aperture Radar (SAR), and Electronic Intelligence (ELINT) systems. UAVs of this class are most often used in NATO armies to support artillery actions, etc. The key task, carried out during their activities, is to plan a reconnaissance mission in which the flight route will be determined that optimally uses the sensors’ capabilities. The paper describes the scenario of determining the mission plan and, in particular, the UAV flight routes to which the recognition targets are assigned. The problem was decomposed into several subproblems: assigning reconnaissance tasks to UAVs with choosing the reconnaissance sensors and designating an initial UAV flight plan. The last step is planning a detailed flight route taking into account the time constraints imposed on recognition and the characteristics of the reconnaissance sensors. The final step is to generate the real UAV flight trajectory based on its technical parameters. The algorithm for determining exact flight routes for the indicated reconnaissance purposes was also discussed, taking into account the presence of enemy troops and available air corridors. The task scheduling algorithm—Vehicle Route Planning with Time Window (VRPTW)—using time windows is formulated in the form of the Mixed Integer Linear Problem (MILP). The MILP formulation was used to solve the UAV flight route planning task. The algorithm can be used both when planning individual UAV missions and UAV groups cooperating together. The approach presented is a practical way of establishing mission plans implemented in real unmanned systems.


 
179 viewsCategory: Chemistry, Physics
 
Sensors, Vol. 20, Pages 1086: Over 100 Million Frames per Second 368 Frames Global Shutter Burst CMOS Image Sensor with Pixel-wise Trench Capacitor Memory Array (Sensors)
Sensors, Vol. 20, Pages 1083: Design for A Highly Stable Laser Source Based on the Error Model of High-Speed High-Resolution Heterodyne Interferometers (Sensors)
 
 
blog comments powered by Disqus


MyJournals.org
The latest issues of all your favorite science journals on one page

Username:
Password:

Register | Retrieve

Search:

Physics


Copyright © 2008 - 2024 Indigonet Services B.V.. Contact: Tim Hulsen. Read here our privacy notice.
Other websites of Indigonet Services B.V.: Nieuws Vacatures News Tweets Nachrichten