MyJournals Home  

RSS FeedsIJMS, Vol. 21, Pages 1413: APP Osaka Mutation in Familial Alzheimer`s Disease--Its Discovery, Phenotypes, and Mechanism of Recessive Inheritance (International Journal of Molecular Sciences)

 
 

19 february 2020 17:00:43

 
IJMS, Vol. 21, Pages 1413: APP Osaka Mutation in Familial Alzheimer`s Disease--Its Discovery, Phenotypes, and Mechanism of Recessive Inheritance (International Journal of Molecular Sciences)
 


Alzheimer’s disease is believed to begin with synaptic dysfunction caused by soluble Aβ oligomers. When this oligomer hypothesis was proposed in 2002, there was no direct evidence that Aβ oligomers actually disrupt synaptic function to cause cognitive impairment in humans. In patient brains, both soluble and insoluble Aβ species always coexist, and therefore it is difficult to determine which pathologies are caused by Aβ oligomers and which are caused by amyloid fibrils. Thus, no validity of the oligomer hypothesis was available until the Osaka mutation was discovered. This mutation, which was found in a Japanese pedigree of familial Alzheimer’s disease, is the deletion of codon 693 of APP gene, resulting in mutant Aβ lacking the 22nd glutamate. Only homozygous carriers suffer from dementia. In vitro studies revealed that this mutation has a very unique character that accelerates Aβ oligomerization but does not form amyloid fibrils. Model mice expressing this mutation demonstrated that all pathologies of Alzheimer’s disease can be induced by Aβ oligomers alone. In this review, we describe the story behind the discovery of the Osaka mutation, summarize the mutant’s phenotypes, and propose a mechanism of its recessive inheritance.


 
181 viewsCategory: Biochemistry, Biophysics, Molecular Biology
 
IJMS, Vol. 21, Pages 1414: Cross-Species Root Transcriptional Network Analysis Highlights Conserved Modules in Response to Nitrate between Maize and Sorghum (International Journal of Molecular Sciences)
IJMS, Vol. 21, Pages 1417: Comparative Proteomic Analysis of Wild-Type Physcomitrella Patens and an OPDA-Deficient Physcomitrella Patens Mutant with Disrupted PpAOS1 and PpAOS2 Genes after Wounding (International Journal of Molecular Sciences)
 
 
blog comments powered by Disqus


MyJournals.org
The latest issues of all your favorite science journals on one page

Username:
Password:

Register | Retrieve

Search:

Molecular Biology


Copyright © 2008 - 2024 Indigonet Services B.V.. Contact: Tim Hulsen. Read here our privacy notice.
Other websites of Indigonet Services B.V.: Nieuws Vacatures News Tweets Nachrichten