MyJournals Home  

RSS FeedsIJMS, Vol. 21, Pages 1437: BAK1 Mediates Light Intensity to Phosphorylate and Activate Catalases to Regulate Plant Growth and Development (International Journal of Molecular Sciences)

 
 

20 february 2020 16:04:56

 
IJMS, Vol. 21, Pages 1437: BAK1 Mediates Light Intensity to Phosphorylate and Activate Catalases to Regulate Plant Growth and Development (International Journal of Molecular Sciences)
 


BAK1 (brassinosteroid-insensitive 1 (BRI1) associated receptor kinase 1) plays major roles in multiple signaling pathways as a coreceptor to regulate plant growth and development and stress response. However, the role of BAK1 in high light signaling is still poorly understood. Here we observed that overexpression of BAK1 in Arabidopsis interferes with the function of high light in promoting plant growth and development, which is independent of the brassinosteroid (BR) signaling pathway. Further investigation shows that high light enhances the phosphorylation of BAK1 and catalase activity, thereby reducing hydrogen peroxide (H2O2) accumulation. Catalase3 (CAT3) is identified as a BAK1-interacting protein by affinity purification and LC-MS/MS analysis. Biochemical analysis confirms that BAK1 interacts with and phosphorylates all three catalases (CAT1, CAT2, and CAT3) of the Arabidopsis genome, and the trans-phosphorylation sites of three catalases with BAK1-CD are identified by LC-MS/MS in vitro. Genetic analyses reveal that the BAK1 overexpression plants knocked out all the three CAT genes completely abolishing the effect of BAK1 on suppression of high light-promoted growth. This study first unravels the role of BAK1 in mediating high light-triggered activation of CATs, thereby degrading H2O2 and regulating plant growth and development in Arabidopsis.


 
180 viewsCategory: Biochemistry, Biophysics, Molecular Biology
 
IJMS, Vol. 21, Pages 1431: Transcriptome Analysis and Identification of Genes Associated with Starch Metabolism in Castanea henryi Seed (Fagaceae) (International Journal of Molecular Sciences)
IJMS, Vol. 21, Pages 1435: Metabolomic Analysis of Morus Cultivar Root Extracts and Their Ameliorative Effect on Testosterone-Induced Prostate Enlargement in Sprague-Dawley Rats (International Journal of Molecular Sciences)
 
 
blog comments powered by Disqus


MyJournals.org
The latest issues of all your favorite science journals on one page

Username:
Password:

Register | Retrieve

Search:

Molecular Biology


Copyright © 2008 - 2024 Indigonet Services B.V.. Contact: Tim Hulsen. Read here our privacy notice.
Other websites of Indigonet Services B.V.: Nieuws Vacatures News Tweets Nachrichten