MyJournals Home  

RSS FeedsIJMS, Vol. 21, Pages 1492: microRNAs in Ex Vivo Human Adipose Tissue Derived Mesenchymal Stromal Cells (ASC) Undergo Rapid Culture-Induced Changes in Expression, Including miR-378 which Promotes Adipogenesis (International Journal of Molecular Sciences)

 
 

21 february 2020 20:00:19

 
IJMS, Vol. 21, Pages 1492: microRNAs in Ex Vivo Human Adipose Tissue Derived Mesenchymal Stromal Cells (ASC) Undergo Rapid Culture-Induced Changes in Expression, Including miR-378 which Promotes Adipogenesis (International Journal of Molecular Sciences)
 


There is clinical interest in using human adipose tissue-derived mesenchymal stromal cells (ASC) to treat a range of inflammatory and regenerative conditions. Aspects of ASC biology, including their regenerative potential and paracrine effect, are likely to be modulated, in part, by microRNAs, small RNA molecules that are embedded as regulators of gene-expression in most biological pathways. However, the effect of standard isolation and expansion protocols on microRNA expression in ASC is not well explored. Here, by using an untouched and enriched population of primary human ASC, we demonstrate that there are rapid and significant changes in microRNA expression when ASC are subjected to standard isolation and expansion methods. Functional studies focusing on miR-378 indicate that these changes in expression may have an impact on phenotype and function. Specifically, we found that increased levels of miR-378 significantly promoted adipogenesis in late passage ASC. These results are informative to maximizing the potential of ASC for use in various clinical applications, and they have implications for targeting microRNAs as a therapeutic strategy for obesity or metabolic disease.


 
180 viewsCategory: Biochemistry, Biophysics, Molecular Biology
 
IJMS, Vol. 21, Pages 1493: Alpha 1-Antitrypsin Deficiency: A Disorder of Proteostasis-Mediated Protein Folding and Trafficking Pathways (International Journal of Molecular Sciences)
IJMS, Vol. 21, Pages 1491: GALNT14: An Emerging Marker Capable of Predicting Therapeutic Outcomes in Multiple Cancers (International Journal of Molecular Sciences)
 
 
blog comments powered by Disqus


MyJournals.org
The latest issues of all your favorite science journals on one page

Username:
Password:

Register | Retrieve

Search:

Molecular Biology


Copyright © 2008 - 2024 Indigonet Services B.V.. Contact: Tim Hulsen. Read here our privacy notice.
Other websites of Indigonet Services B.V.: Nieuws Vacatures News Tweets Nachrichten