MyJournals Home  

RSS FeedsIJERPH, Vol. 17, Pages 1522: Short-term Effect of Air Pollution on Tuberculosis Based on Kriged Data: A Time-series Analysis (International Journal of Environmental Research and Public Health)

 
 

27 february 2020 12:00:05

 
IJERPH, Vol. 17, Pages 1522: Short-term Effect of Air Pollution on Tuberculosis Based on Kriged Data: A Time-series Analysis (International Journal of Environmental Research and Public Health)
 


Tuberculosis (TB) has a very high mortality rate worldwide. However, only a few studies have examined the associations between short-term exposure to air pollution and TB incidence. Our objectives were to estimate associations between short-term exposure to air pollutants and TB incidence in Wuhan city, China, during the 2015–2016 period. We applied a generalized additive model to access the short-term association of air pollution with TB. Daily exposure to each air pollutant in Wuhan was determined using ordinary kriging. The air pollutants included in the analysis were particulate matter (PM) with an aerodynamic diameter less than or equal to 2.5 micrometers (PM2.5), PM with an aerodynamic diameter less than or equal to 10 micrometers (PM10), sulfur dioxide (SO2), nitrogen dioxide (NO2), carbon monoxide (CO), and ground-level ozone (O3). Daily incident cases of TB were obtained from the Hubei Provincial Center for Disease Control and Prevention (Hubei CDC). Both single- and multiple-pollutant models were used to examine the associations between air pollution and TB. Seasonal variation was assessed by splitting the all-year data into warm (May–October) and cold (November–April) seasons. In the single-pollutant model, for a 10 μg/m3 increase in PM2.5, PM10, and O3 at lag 7, the associated TB risk increased by 17.03% (95% CI: 6.39, 28.74), 11.08% (95% CI: 6.39, 28.74), and 16.15% (95% CI: 1.88, 32.42), respectively. In the multi-pollutant model, the effect of PM2.5 on TB remained statistically significant, while the effects of other pollutants were attenuated. The seasonal analysis showed that there was not much difference regarding the impact of air pollution on TB between the warm season and the cold season. Our study reveals that the mechanism linking air pollution and TB is still complex. Further research is warranted to explore the interaction of air pollution and TB.


 
156 viewsCategory: Medicine, Pathology, Toxicology
 
IJERPH, Vol. 17, Pages 1523: Effects of an Acute Physical Activity Break on Test Anxiety and Math Test Performance (International Journal of Environmental Research and Public Health)
IJERPH, Vol. 17, Pages 1521: Personality Disorders and Personality Profiles in a Sample of Transgender Individuals Requesting Gender-Affirming Treatments (International Journal of Environmental Research and Public Health)
 
 
blog comments powered by Disqus


MyJournals.org
The latest issues of all your favorite science journals on one page

Username:
Password:

Register | Retrieve

Search:

Toxicology


Copyright © 2008 - 2024 Indigonet Services B.V.. Contact: Tim Hulsen. Read here our privacy notice.
Other websites of Indigonet Services B.V.: Nieuws Vacatures News Tweets Nachrichten