MyJournals Home  

RSS FeedsIJMS, Vol. 21, Pages 2276: Functionalized, Vertically Super-Aligned Multiwalled Carbon Nanotubes for Potential Biomedical Applications (International Journal of Molecular Sciences)

 
 

26 march 2020 03:00:41

 
IJMS, Vol. 21, Pages 2276: Functionalized, Vertically Super-Aligned Multiwalled Carbon Nanotubes for Potential Biomedical Applications (International Journal of Molecular Sciences)
 


Currently, there is a lack of ultrasensitive diagnostic tool to detect some diseases such as ischemic stroke, thereby impacting effective and efficient intervention for such diseases at an embryonic stage. In addition to the lack of proper detection of the neurological diseases, there is also a challenge in the treatment of these diseases. Carbon nanotubes have a potential to be employed in solving the theragnostic challenges in those diseases. In this study, carbon nanotubes were successfully synthesized for potential application in the detection and treatment of the neurological diseases such as ischemic stroke. Vertically aligned multiwalled carbon nanotubes (VA-MWCNTs) were purified with HCl, carboxylated with H2SO4:HNO3 (3:1) and acylated with SOCl2 for use in potential targeting studies and for the design of a carbon-based electrode for possible application in the diagnosis of neurological diseases, including ischemic stroke. MWCNTs were washed, extracted from the filter membranes and dried in a vacuum oven at 60 °C for 24 h prior to functionalization and PEGylation. CNTs were characterized by SEM, TEM, OCA, DLS, CV and EIS. The HCl-treated CNT obtained showed an internal diameter, outer diameter and thickness of 8 nm, 34 nm and 75 µm, while these parameters for the H2SO4-HNO3-treated CNT were 8 nm, 23 nm and 41µm, respectively. PEGylated CNT demonstrated zeta potential, polydispersive index and particle size distribution of 6 mV, 0.41 and 98 nm, respectively. VA-MWCNTs from quartz tube were successfully purified, carboxylated, acylated and PEGylated for potential functionalization for use in targeting studies. For designing the carbon-based electrode, VA-MWCNTs on silicon wafer were successfully incorporated into epoxy resin for diagnostic applications. Functionalized MWCNTs were nontoxic towards PC-12 neuronal cells. In conclusion, vertically super-aligned MWCNTs have been successfully synthesized and functionalized for possible theragnostic biomedical applications in neurological disorders such as ischemic stroke.


 
211 viewsCategory: Biochemistry, Biophysics, Molecular Biology
 
IJMS, Vol. 21, Pages 2259: Fast-Acting and Receptor-Mediated Regulation of Neuronal Signaling Pathways by Copaiba Essential Oil (International Journal of Molecular Sciences)
IJMS, Vol. 21, Pages 2282: Disorders of Sex Development--Novel Regulators, Impacts on Fertility, and Options for Fertility Preservation (International Journal of Molecular Sciences)
 
 
blog comments powered by Disqus


MyJournals.org
The latest issues of all your favorite science journals on one page

Username:
Password:

Register | Retrieve

Search:

Molecular Biology


Copyright © 2008 - 2024 Indigonet Services B.V.. Contact: Tim Hulsen. Read here our privacy notice.
Other websites of Indigonet Services B.V.: Nieuws Vacatures News Tweets Nachrichten