MyJournals Home  

RSS FeedsIJMS, Vol. 21, Pages 2350: Burn-Induced Cardiac Mitochondrial Dysfunction via Interruption of the PDE5A-cGMP-PKG Pathway (International Journal of Molecular Sciences)

 
 

28 march 2020 17:03:32

 
IJMS, Vol. 21, Pages 2350: Burn-Induced Cardiac Mitochondrial Dysfunction via Interruption of the PDE5A-cGMP-PKG Pathway (International Journal of Molecular Sciences)
 


: Burn-induced heart dysfunction is a key factor for patient mortality. However, the molecular mechanisms are not yet fully elucidated. This study sought to understand whether burn-induced heart dysfunction is associated with cardiac mitochondrial dysfunction and interruption of the PDE5A-cGMP-PKG pathway. Sixty percent total body surface area (TBSA) scald burned rats (± sildenafil) were used in this study. A transmission electron microscope (TEM), real-time qPCR, O2K-respirometer, and electron transport chain assays were used to characterized molecular function. Cardiac mitochondrial morphological shapes were disfigured with a decline in mitochondrial number, area, and size, resulting in deficiency of cardiac mitochondrial replication. Burn induced a decrease in all mitDNA encoded genes. State 3 oxygen consumption was significantly decreased. Mitochondrial complex I substrate-energized or complex II substrate-energized and both of respiratory control ratio (RCRs) were decreased after burn. All mitochondrial complex activity except complex II were decreased in the burn group, correlating with decreases in mitochondrial ATP and MnSOD activity. Sildenafil, a inhibitor of the PDE5A-cGMP-PKG pathway, preserved the mitochondrial structure, respiratory chain efficiency and energy status in cardiac tissue. Furthermore, sildenafil treatment significantly restored ADP-conjugated respiration in burned groups. In conclusion, cardiac mitochondrial damage contributes to burn-induced heart dysfunction via the PDE5A-cGMP-PKG pathway.


 
194 viewsCategory: Biochemistry, Biophysics, Molecular Biology
 
IJMS, Vol. 21, Pages 2351: Mechanisms behind Retinal Ganglion Cell Loss in Diabetes and Therapeutic Approach (International Journal of Molecular Sciences)
IJMS, Vol. 21, Pages 2355: Cytotoxicity of NiO and Ni(OH)2 Nanoparticles Is Mediated by Oxidative Stress-Induced Cell Death and Suppression of Cell Proliferation (International Journal of Molecular Sciences)
 
 
blog comments powered by Disqus


MyJournals.org
The latest issues of all your favorite science journals on one page

Username:
Password:

Register | Retrieve

Search:

Molecular Biology


Copyright © 2008 - 2024 Indigonet Services B.V.. Contact: Tim Hulsen. Read here our privacy notice.
Other websites of Indigonet Services B.V.: Nieuws Vacatures News Tweets Nachrichten