MyJournals Home  

RSS FeedsRemote Sensing, Vol. 12, Pages 1136: Quantifying the Sensitivity of NDVI-Based C Factor Estimation and Potential Soil Erosion Prediction Using Spaceborne Earth Observation Data (Remote Sensing)

 
 

3 april 2020 04:02:59

 
Remote Sensing, Vol. 12, Pages 1136: Quantifying the Sensitivity of NDVI-Based C Factor Estimation and Potential Soil Erosion Prediction Using Spaceborne Earth Observation Data (Remote Sensing)
 


The Normalized Difference Vegetation Index (NDVI), has been increasingly used to capture spatiotemporal variations in cover factor (C) determination for erosion prediction on a larger landscape scale. However, NDVI-based C factor (Cndvi) estimation per se is sensitive to various biophysical variables, such as soil condition, topographic features, and vegetation phenology. As a result, Cndvi often results in incorrect values that affect the quality of soil erosion prediction. The aim of this study is to multi-temporally estimate Cndvi values and compare the values with those of literature values (Clit) in order to quantify discrepancies between C values obtained via NDVI and empirical-based methods. A further aim is to quantify the effect of biophysical variables such as slope shape, erodibility, and crop growth stage variation on Cndvi and soil erosion prediction on an agricultural landscape scale. Multi-temporal Landsat 7, Landsat 8, and Sentinel 2 data, from 2013 to 2016, were used in combination with high resolution agricultural land use data of the Integrated Administrative and Control System, from the Uckermark district of north-eastern Germany. Correlations between Cndvi and Clit improved in data from spring and summer seasons (up to r = 0.93); nonetheless, the Cndvi values were generally higher compared with Clit values. Consequently, modelling erosion using Cndvi resulted in two times higher rates than modelling with Clit. The Cndvi values were found to be sensitive to soil erodibility condition and slope shape of the landscape. Higher erodibility condition was associated with higher Cndvi values. Spring and summer taken images showed significant sensitivity to heterogeneous soil condition. The Cndvi estimation also showed varying sensitivity to slope shape variation; values on convex-shaped slopes were higher compared with flat slopes. Quantifying the sensitivity of Cndvi values to biophysical variables may help improve capturing spatiotemporal variability of C factor values in similar landscapes and conditions.


 
18 viewsCategory: Geology, Physics
 
Remote Sensing, Vol. 12, Pages 1138: Spatially Quantifying Forest Loss at Landscape-scale Following a Major Storm Event (Remote Sensing)
Remote Sensing, Vol. 12, Pages 1135: Land-Use Land-Cover Classification by Machine Learning Classifiers for Satellite Observations--A Review (Remote Sensing)
 
 
blog comments powered by Disqus


MyJournals.org
The latest issues of all your favorite science journals on one page

Username:
Password:

Register | Retrieve

Search:

Physics


Copyright © 2008 - 2020 Indigonet Services B.V.. Contact: Tim Hulsen. Read here our privacy notice.
Other websites of Indigonet Services B.V.: Nieuws Vacatures News Tweets Nachrichten