MyJournals Home  

RSS FeedsMaterials, Vol. 13, Pages 1658: Resilient Properties of Soil-Rock Mixture Materials: Preliminary Investigation of the Effect of Composition and Structure (Materials)

 
 

3 april 2020 15:00:16

 
Materials, Vol. 13, Pages 1658: Resilient Properties of Soil-Rock Mixture Materials: Preliminary Investigation of the Effect of Composition and Structure (Materials)
 


The physical composition and stress state of soil-rock mixture (SRM) materials have a crucial influence on their mechanical properties, and play a vital role in improving the performance of subgrade. To reveal the resilient behavior and mesostructure evolution of SRM materials, triaxial tests and discrete element method (DEM) numerical analysis have been carried out. In the triaxial test section, the mechanical response of SRM materials was investigated by preparing samples under different stress states and physical states and conducting triaxial tests on samples. Simultaneously, a new irregular particle modeling method was developed and applied to the discrete element modeling process to analyze the mesostructure evolution of SRM materials under cycling loading. First, a cyclic triaxial test of SRM material is performed on the SRM material, and the effects of bulk stress, octahedral shear stress and rock content on the resilient modulus of the SRM material are analyzed. It is revealed that the resilient modulus increases with increasing bulk stress and rock content, and decreases with increasing octahedral shear stress. Based on a new resilient modulus prediction model, the relationships among the rock content, stress state and resilient modulus are established. Then, based on an improved DEM modeling method, a discrete element model of the SRM is established, and the influence of rock content on coordination number and mesostructure evolution of the SRM is analyzed. The results show that in SRM materials, the increase of crushed rock changes the mesostructure of the SRM material. With the increase of rock content, the internal contact force changes from “between soil and rock” to “between rocks”, and the skeleton formed in the rocks gradually develops overall stiffness. Under the condition of low stress, the anisotropy of the SRM material is mainly caused by the shape and grade distribution of crushed rock. The induced anisotropy caused by the change of stress state has little effect on its mechanical behavior, which may lead to the greater dispersion of multiple SRM test results.


 
199 viewsCategory: Chemistry, Physics
 
Materials, Vol. 13, Pages 1659: Influence of Scanning Strategy Parameters on Residual Stress in the SLM Process According to the Bridge Curvature Method for AISI 316L Stainless Steel (Materials)
Materials, Vol. 13, Pages 1656: Organic Acid Regulated Self-Assembly and Photophysical Properties of Perylene Bisimide Derivatives (Materials)
 
 
blog comments powered by Disqus


MyJournals.org
The latest issues of all your favorite science journals on one page

Username:
Password:

Register | Retrieve

Search:

Physics


Copyright © 2008 - 2024 Indigonet Services B.V.. Contact: Tim Hulsen. Read here our privacy notice.
Other websites of Indigonet Services B.V.: Nieuws Vacatures News Tweets Nachrichten