MyJournals Home  

RSS FeedsEnergies, Vol. 13, Pages 1708: Co-Combustion of Municipal Sewage Sludge and Biomass in a Grate Fired Boiler for Phosphorus Recovery in Bottom Ash (Energies)

 
 

4 april 2020 02:01:05

 
Energies, Vol. 13, Pages 1708: Co-Combustion of Municipal Sewage Sludge and Biomass in a Grate Fired Boiler for Phosphorus Recovery in Bottom Ash (Energies)
 


Phosphorus has been identified as a critical element by the European Union and recycling efforts are increasingly common. An important phosphorus-containing waste stream for recycling is municipal sewage sludge (MSS), which is used directly as fertilizer to farmland. However, it contains pollutants such as heavy metals, pharmaceutical residues, polychlorinated bi-phenyls (PCBs) and nano-plastics. The interest in combustion of MSS is continuously growing, as it both reduces the volume as well as destroys the organic materials and could separate certain heavy metals from the produced ashes. This results in ashes with a potential for either direct use as fertilizer or as a suitable feedstock for upgrading processes. The aim of this study was to investigate co-combustion of MSS and biomass to create a phosphorus-rich bottom ash with a low heavy metal content. A laboratory-scale fixed-bed reactor in addition to an 8 MWth grate-boiler was used for the experimental work. The concentration of phosphorus and selected heavy metals in the bottom ashes were compared to European Union regulation on fertilizers, ash application to Swedish forests and Swedish regulations on sewage sludge application to farmland. Element concentrations were determined by ICP-AES complemented by analysis of spatial distribution with SEM-EDS and XRD analysis to determine crystalline compounds. The results show that most of the phosphorus was retained in the bottom ash, corresponding to 9–16 wt.% P2O5, while the concentration of cadmium, mercury, lead and zinc was below the limits of the regulations. However, copper, chromium and nickel concentrations exceeded these standards.


 
212 viewsCategory: Biophysics, Biotechnology, Physics
 
Energies, Vol. 13, Pages 1710: AC Volume Breakdown and Surface Flashover of a 4% NovecTM 4710/96% CO2 Gas Mixture Compared to CO2 in Highly Nonhomogeneous Fields (Energies)
Energies, Vol. 13, Pages 1709: Development and Performance Assessment of Prefabricated Insulation Elements for Deep Energy Renovation of Apartment Buildings (Energies)
 
 
blog comments powered by Disqus


MyJournals.org
The latest issues of all your favorite science journals on one page

Username:
Password:

Register | Retrieve

Search:

Physics


Copyright © 2008 - 2024 Indigonet Services B.V.. Contact: Tim Hulsen. Read here our privacy notice.
Other websites of Indigonet Services B.V.: Nieuws Vacatures News Tweets Nachrichten