MyJournals Home  

RSS FeedsMaterials, Vol. 13, Pages 1701: Seismic Assessment of RC Bridge Columns Retrofitted with NearSurface Mounted Shape Memory Alloy Technique (Materials)

 
 

5 april 2020 15:03:35

 
Materials, Vol. 13, Pages 1701: Seismic Assessment of RC Bridge Columns Retrofitted with NearSurface Mounted Shape Memory Alloy Technique (Materials)
 


From past earthquakes, it has been found that the large residual displacement of bridges after seismic events could be one of the major causes of instability and serviceability disruption of the bridge. The shape memory alloy bars have the ability to reduce permanent deformations of concrete structures. This paper represents a new approach for retrofitting and seismic rehabilitation of previously designed bridge columns. In this concept, the RC bridge column was divided into three zones. The first zone in the critical region of the column where the plastic hinge is possible to occur was retrofitted with nearsurface mounted shape memory alloy technique and wrapped with FRP sheets. The second zone, being above the plastic hinge, was confined with FiberReinforced Polymer (FRP) jacket only, and the rest of the column left without any retrofitting. For this purpose, five types of shape memory alloy bars were used. One rectangular and one circular RC bridge column was selected and retrofitted with this proposed technique. The retrofitted columns were numerically investigated under nonlinear static and lateral cyclic loading using 2D fiber element modeling in OpenSees software. The results were normalized and compared with the asbuilt column. The results indicated that the relative selfcentering capacity of RC bridge piers retrofitted with this new approach was highly greater than that of the asbuilt column. In addition, enhancements in strength and ductility were observed.


 
33 viewsCategory: Chemistry, Physics
 
Materials, Vol. 13, Pages 1702: Manipulation of TiO2 Nanoparticle/Polymer Coatings Wettability and Friction in Different Environments (Materials)
Materials, Vol. 13, Pages 1699: Wood Density and Moisture Content Estimation by Drilling Chips Extraction Technique (Materials)
 
 
blog comments powered by Disqus


MyJournals.org
The latest issues of all your favorite science journals on one page

Username:
Password:

Register | Retrieve

Search:

Physics


Copyright © 2008 - 2020 Indigonet Services B.V.. Contact: Tim Hulsen. Read here our privacy notice.
Other websites of Indigonet Services B.V.: Nieuws Vacatures News Tweets Nachrichten