MyJournals Home  

RSS FeedsRemote Sensing, Vol. 12, Pages 1168: Machine Learning-Based CYGNSS Soil Moisture Estimates over ISMN sites in CONUS (Remote Sensing)

 
 

6 april 2020 01:02:40

 
Remote Sensing, Vol. 12, Pages 1168: Machine Learning-Based CYGNSS Soil Moisture Estimates over ISMN sites in CONUS (Remote Sensing)
 


Soil moisture (SM) derived from satellite-based remote sensing measurements plays a vital role for understanding Earth’s land and near-surface atmosphere interactions. Bistatic Global Navigation Satellite System (GNSS) Reflectometry (GNSS-R) has emerged in recent years as a new domain of microwave remote sensing with great potential for SM retrievals, particularly at high spatio-temporal resolutions. In this work, a machine learning (ML)-based framework is presented for obtaining SM data products over the International Soil Moisture Network (ISMN) sites in the Continental United States (CONUS) by leveraging spaceborne GNSS-R observations provided by NASA’s Cyclone GNSS (CYGNSS) constellation alongside remotely sensed geophysical data products. Three widely-used ML approaches—artificial neural network (ANN), random forest (RF), and support vector machine (SVM)—are compared and analyzed for the SM retrieval through utilizing multiple validation strategies. Specifically, using a 5-fold cross-validation method, overall RMSE values of 0.052, 0.061, and 0.065 cm 3 /cm 3 are achieved for the RF, ANN, and SVM techniques, respectively. In addition, both a site-independent and a year-based validation techniques demonstrate satisfactory accuracy of the proposed ML model, suggesting that this SM approach can be generalized in space and time domains. Moreover, the achieved accuracy can be further improved when the model is trained and tested over individual SM networks as opposed to combining all available SM networks. Additionally, factors including soil type and land cover are analyzed with respect to their impacts on the accuracy of SM retrievals. Overall, the results demonstrated here indicate that the proposed technique can confidently provide SM estimates over lightly-vegetated areas with vegetation water content (VWC) less than 5 kg/m2 and relatively low spatial heterogeneity.


 
51 viewsCategory: Geology, Physics
 
Remote Sensing, Vol. 12, Pages 1166: Co-Seismic Magnetic Field Perturbations Detected by Swarm Three-Satellite Constellation (Remote Sensing)
Remote Sensing, Vol. 12, Pages 1167: Uncertainty in Measured Raindrop Size Distributions from Four Types of Collocated Instruments (Remote Sensing)
 
 
blog comments powered by Disqus


MyJournals.org
The latest issues of all your favorite science journals on one page

Username:
Password:

Register | Retrieve

Search:

Physics


Copyright © 2008 - 2020 Indigonet Services B.V.. Contact: Tim Hulsen. Read here our privacy notice.
Other websites of Indigonet Services B.V.: Nieuws Vacatures News Tweets Nachrichten