MyJournals Home  

RSS FeedsRemote Sensing, Vol. 13, Pages 3690: SAR Ship Detection Dataset (SSDD): Official Release and Comprehensive Data Analysis (Remote Sensing)

 
 

15 september 2021 15:10:25

 
Remote Sensing, Vol. 13, Pages 3690: SAR Ship Detection Dataset (SSDD): Official Release and Comprehensive Data Analysis (Remote Sensing)
 


SAR Ship Detection Dataset (SSDD) is the first open dataset that is widely used to research state-of-the-art technology of ship detection from synthetic aperture radar (SAR) imagery based on deep learning (DL). According to our investigation, up to 46.59% of the total 161 public reports confidently select SSDD to study DL-based SAR ship detection. Undoubtedly, this situation reveals the popularity and great influence of SSDD in the SAR remote sensing community. Nevertheless, the coarse annotations and ambiguous standards of use of its initial version both hinder fair methodological comparisons and effective academic exchanges. Additionally, its single-function horizontal-vertical rectangle bounding box (BBox) labels can no longer satisfy the current research needs of the rotatable bounding box (RBox) task and the pixel-level polygon segmentation task. Therefore, to address the above two dilemmas, in this review, advocated by the publisher of SSDD, we will make an official release of SSDD based on its initial version. SSDD`s official release version will cover three types: (1) a bounding box SSDD (BBox-SSDD), (2) a rotatable bounding box SSDD (RBox-SSDD), and (3) a polygon segmentation SSDD (PSeg-SSDD). We relabel ships in SSDD more carefully and finely, and then explicitly formulate some strict using standards, e.g., (1) the training-test division determination, (2) the inshore-offshore protocol, (3) the ship-size reasonable definition, (4) the determination of the densely distributed small ship samples, and (5) the determination of the densely parallel berthing at ports ship samples. These using standards are all formulated objectively based on the using differences of existing 75 (161 × 46.59%) public reports. They will be beneficial for fair method comparison and effective academic exchanges in the future. Most notably, we conduct a comprehensive data analysis on BBox-SSDD, RBox-SSDD, and PSeg-SSDD. Our analysis results can provide some valuable suggestions for possible future scholars to further elaborately design DL-based SAR ship detectors with higher accuracy and stronger robustness when using SSDD.


 
47 viewsCategory: Geology, Physics
 
Remote Sensing, Vol. 13, Pages 3689: Scattering Model-Based Frequency-Hopping RCS Reconstruction Using SPICE Methods (Remote Sensing)
Remote Sensing, Vol. 13, Pages 3691: Deep Learning-Based Method for Detection of External Air Conditioner Units from Street View Images (Remote Sensing)
 
 
blog comments powered by Disqus


MyJournals.org
The latest issues of all your favorite science journals on one page

Username:
Password:

Register | Retrieve

Search:

Physics


Copyright © 2008 - 2021 Indigonet Services B.V.. Contact: Tim Hulsen. Read here our privacy notice.
Other websites of Indigonet Services B.V.: Nieuws Vacatures News Tweets Nachrichten