MyJournals Home  

RSS FeedsIJMS, Vol. 22, Pages 10035: Hesperetin Inhibits Expression of Virulence Factors and Growth of Helicobacter pylori (International Journal of Molecular Sciences)

 
 

17 september 2021 11:09:34

 
IJMS, Vol. 22, Pages 10035: Hesperetin Inhibits Expression of Virulence Factors and Growth of Helicobacter pylori (International Journal of Molecular Sciences)
 


Helicobacter pylori (H. pylori) is a bacterium known to infect the human stomach. It can cause various gastrointestinal diseases including gastritis and gastric cancer. Hesperetin is a major flavanone component contained in citrus fruits. It has been reported to possess antibacterial, antioxidant, and anticancer effects. However, the antibacterial mechanism of hesperetin against H. pylori has not been reported yet. Therefore, the objective of this study was to determine the inhibitory effects of hesperetin on H. pylori growth and its inhibitory mechanisms. The results of this study showed that hesperetin inhibits the growth of H. pylori reference strains and clinical isolates. Hesperetin inhibits the expression of genes in replication (dnaE, dnaN, dnaQ, and holB) and transcription (rpoA, rpoB, rpoD, and rpoN) machineries of H. pylori. Hesperetin also inhibits the expression of genes related to H. pylori motility (flhA, flaA, and flgE) and adhesion (sabA, alpA, alpB, hpaA, and hopZ). It also inhibits the expression of urease. Hespereti n downregulates major virulence factors such as cytotoxin-associated antigen A (CagA) and vacuolating cytotoxin A (VacA) and decreases the translocation of CagA and VacA proteins into gastric adenocarcinoma (AGS) cells. These results might be due to decreased expression of the type IV secretion system (T4SS) and type V secretion system (T5SS) involved in translocation of CagA and VacA, respectively. The results of this study indicate that hesperetin has antibacterial effects against H. pylori. Thus, hesperetin might be an effective natural product for the eradication of H. pylori.


 
169 viewsCategory: Biochemistry, Biophysics, Molecular Biology
 
IJMS, Vol. 22, Pages 10039: The Carboxyl-Terminus of TRANSPARENT TESTA GLABRA1 Is Critical for Its Functions in Arabidopsis (International Journal of Molecular Sciences)
IJMS, Vol. 22, Pages 10040: Significance of NPM1 Gene Mutations in AML (International Journal of Molecular Sciences)
 
 
blog comments powered by Disqus


MyJournals.org
The latest issues of all your favorite science journals on one page

Username:
Password:

Register | Retrieve

Search:

Molecular Biology


Copyright © 2008 - 2024 Indigonet Services B.V.. Contact: Tim Hulsen. Read here our privacy notice.
Other websites of Indigonet Services B.V.: Nieuws Vacatures News Tweets Nachrichten