MyJournals Home  

RSS FeedsIJMS, Vol. 22, Pages 10062: Methyl Brevifolincarboxylate Attenuates Free Fatty Acid-Induced Lipid Metabolism and Inflammation in Hepatocytes through AMPK/NF-κB Signaling Pathway (International Journal of Molecular Sciences)

 
 

17 september 2021 15:28:53

 
IJMS, Vol. 22, Pages 10062: Methyl Brevifolincarboxylate Attenuates Free Fatty Acid-Induced Lipid Metabolism and Inflammation in Hepatocytes through AMPK/NF-κB Signaling Pathway (International Journal of Molecular Sciences)
 


The prevalence of non-alcoholic fatty liver disease (NAFLD) is one of the leading causes of chronic liver diseases worldwide. This study examined the potential protective effects of a naturally occurring polyphenolic compound, methyl brevifolincarboxylate (MBC) on fatty liver injury in vitro. The results showed that MBC at its non-cytotoxic concentrations, reduced lipid droplet accumulation and triglyceride (TG) levels in the oleic acid (OA)-treated human hepatocarcinoma cell line, SK-HEP-1 and murine primary hepatocytes. In OA-treated SK-HEP-1 cells and primary murine hepatocytes, MBC attenuated the mRNA expression levels of the de novo lipogenesis molecules, acetyl-coenzyme A carboxylase (Acc1), fatty acid synthase (Fasn) and sterol regulatory element binding protein 1c (Srebp1c). MBC promoted the lipid oxidation factor peroxisome proliferator activated receptor-α (Pparα), and its target genes, carnitine palmitoyl transferase 1 (Cpt1) and acyl-coenzyme A oxidase 1 (Acox1) in both the SK-HEP-1 cells and primary murine hepatocytes. The mRNA results were further supported by the attenuated protein expression of lipogenesis and lipid oxidation molecules in OA-treated SK-HEP-1 cells. The MBC increased the expression of AMP activated protein kinase (AMPK) phosphorylation. On the other hand, MBC treatment dampened the inflammatory mediator`s, tumor necrosis factor (TNF)-α, interleukin-6 (IL-6), IL-8, and IL-1β secretion, and nuclear factor (NF)-κB expression (mRNA and protein) through reduced reactive oxygen species production in OA-treated SK-HEP-1 cells. Taken together, our results demonstrated that MBC possessed potential protective effects against NAFLD in vitro by amelioration of lipid metabolism and inflammatory markers through the AMPK/NF-κB signaling pathway.


 
193 viewsCategory: Biochemistry, Biophysics, Molecular Biology
 
IJMS, Vol. 22, Pages 10067: A Decellularized Human Limbal Scaffold for Limbal Stem Cell Niche Reconstruction (International Journal of Molecular Sciences)
IJMS, Vol. 22, Pages 10068: Dimerization of Human Angiogenin and of Variants Involved in Neurodegenerative Diseases (International Journal of Molecular Sciences)
 
 
blog comments powered by Disqus


MyJournals.org
The latest issues of all your favorite science journals on one page

Username:
Password:

Register | Retrieve

Search:

Molecular Biology


Copyright © 2008 - 2024 Indigonet Services B.V.. Contact: Tim Hulsen. Read here our privacy notice.
Other websites of Indigonet Services B.V.: Nieuws Vacatures News Tweets Nachrichten