MyJournals Home  

RSS FeedsIJMS, Vol. 22, Pages 10071: Study on Maximum Specific Loss Power in Fe3O4 Nanoparticles Decorated with Biocompatible Gamma-Cyclodextrins for Cancer Therapy with Superparamagnetic Hyperthermia (International Journal of Molecular Sciences)

 
 

17 september 2021 16:08:25

 
IJMS, Vol. 22, Pages 10071: Study on Maximum Specific Loss Power in Fe3O4 Nanoparticles Decorated with Biocompatible Gamma-Cyclodextrins for Cancer Therapy with Superparamagnetic Hyperthermia (International Journal of Molecular Sciences)
 


Different chemical agents are used for the biocompatibility and/or functionality of the nanoparticles used in magnetic hyperthermia to reduce or even eliminate cellular toxicity and to limit the interaction between them (van der Waals and magnetic dipolar interactions), with highly beneficial effects on the efficiency of magnetic hyperthermia in cancer therapy. In this paper we propose an innovative strategy for the biocompatibility of these nanoparticles using gamma-cyclodextrins (γ-CDs) to decorate the surface of magnetite (Fe3O4) nanoparticles. The influence of the biocompatible organic layer of cyclodextrins, from the surface of Fe3O4 ferrimagnetic nanoparticles, on the maximum specific loss power in superparamagnetic hyperthermia, is presented and analyzed in detail in this paper. Furthermore, our study shows the optimum conditions in which the magnetic nanoparticles covered with gamma-cyclodextrin (Fe3O4–γ-CDs) can be utilized in superparamagnetic hyperthermia for an alternative cancer therapy with higher efficiency in destroying tumoral cells and eliminating cellular toxicity.


 
187 viewsCategory: Biochemistry, Biophysics, Molecular Biology
 
IJMS, Vol. 22, Pages 10072: WNT/β-Catenin Signaling Promotes TGF-β-Mediated Activation of Human Cardiac Fibroblasts by Enhancing IL-11 Production (International Journal of Molecular Sciences)
IJMS, Vol. 22, Pages 10073: Systemic Expression of Genes Involved in the Plant Defense Response Induced by Wounding in Senna tora (International Journal of Molecular Sciences)
 
 
blog comments powered by Disqus


MyJournals.org
The latest issues of all your favorite science journals on one page

Username:
Password:

Register | Retrieve

Search:

Molecular Biology


Copyright © 2008 - 2024 Indigonet Services B.V.. Contact: Tim Hulsen. Read here our privacy notice.
Other websites of Indigonet Services B.V.: Nieuws Vacatures News Tweets Nachrichten