MyJournals Home  

RSS FeedsIJMS, Vol. 22, Pages 11294: Light Tailoring: Impact of UV-C Irradiation on Biosynthesis, Physiognomies, and Clinical Activities of Morus macroura-Mediated Monometallic (Ag and ZnO) and Bimetallic (Ag–ZnO) Nanoparticles (International Journal of Molecular Sciences)

 
 

19 october 2021 15:59:15

 
IJMS, Vol. 22, Pages 11294: Light Tailoring: Impact of UV-C Irradiation on Biosynthesis, Physiognomies, and Clinical Activities of Morus macroura-Mediated Monometallic (Ag and ZnO) and Bimetallic (Ag–ZnO) Nanoparticles (International Journal of Molecular Sciences)
 


A nano-revolution based on the green synthesis of nanomaterials could affect all areas of human life, and nanotechnology represents a propitious platform for various biomedical applications. During the synthesis of nanoparticles, various factors can control their physiognomies and clinical activities. Light is one of the major physical factors that can play an important role in tuning/refining the properties of nanoparticles. In this study, biocompatible monometallic (AgNPs and ZnONPs) and bimetallic Ag–ZnONPs (0.1/0.1 and 0.1/0.5) were synthesized under UV-C light irradiation from the leaf extract of Morus macroura, which possesses enriched TPC (4.238 ± 0.26 mg GAE/g DW) and TFC (1.073 ± 0.18 mg QE/g DW), as well as strong FRSA (82.39%). These green synthesized NPs were evaluated for their anti-diabetic, anti-glycation, and biocompatibility activities. Furthermore, their anti-cancerous activity against HepG2 cell lines was assessed in terms of cell viability, production of reactive oxygen/nitrogen species, mitochondrial membrane potential, and apoptotic caspase-3/7 expression and activity. Synthesized NPs were characterized by techniques including ultraviolet-visible spectroscopy, SEM, EDX, FTIR, and XRD. UV-C mediated monometallic and bimetallic NPs showed well-defined characteristic shapes with a more disperse particle distribution, definite crystalline structures, and reduced sizes as compared to their respective controls. In the case of clinical activities, the highest anti-diabetic activity (67.77 ± 3.29% against α-amylase and 35.83 ± 2.40% against α-glucosidase) and anti-glycation activity (37.68 ± 3.34% against pentosidine-like AGEs and 67.87 ± 2.99% against vesperlysine-like AGEs) was shown by UV-C mediated AgNPs. The highest biocompatibility (IC50=14.23 ± 1.68 µg/mL against brine shrimp and 2.48 ± 0.32% hemolysis of human red blood cells) was shown by UV-C mediated ZnONPs. In the case of anti-cancerous activities, the lowest viability (23.45 ±1.40%) with enhanced ROS/NOS production led to a significant disruption of mitochondrial membrane potential and greater caspase-3/7 gene expression and activity by UV-C mediated bimetallic Ag–ZnONPs (0.1/0.5). The present work highlights the positive effects of UV-C light on physico-chemical physiognomies as well as the clinical activities of NPs.


 
166 viewsCategory: Biochemistry, Biophysics, Molecular Biology
 
IJMS, Vol. 22, Pages 11292: EHMT2/G9a as an Epigenetic Target in Pediatric and Adult Brain Tumors (International Journal of Molecular Sciences)
IJMS, Vol. 22, Pages 11295: The Genetics of Diabetes: What We Can Learn from Drosophila (International Journal of Molecular Sciences)
 
 
blog comments powered by Disqus


MyJournals.org
The latest issues of all your favorite science journals on one page

Username:
Password:

Register | Retrieve

Search:

Molecular Biology


Copyright © 2008 - 2024 Indigonet Services B.V.. Contact: Tim Hulsen. Read here our privacy notice.
Other websites of Indigonet Services B.V.: Nieuws Vacatures News Tweets Nachrichten