MyJournals Home  

RSS FeedsRemote Sensing, Vol. 13, Pages 4225: Possibilities of Estimating F2 Layer Peak Plasma Frequency Using HF Radiation from High Apogee Satellites over Arctic Region (Remote Sensing)

 
 

21 october 2021 14:28:43

 
Remote Sensing, Vol. 13, Pages 4225: Possibilities of Estimating F2 Layer Peak Plasma Frequency Using HF Radiation from High Apogee Satellites over Arctic Region (Remote Sensing)
 


Based on the results of mathematical modeling, we consider the possibility to estimate the plasma frequency F2 layer maximum of the polar ionosphere (critical frequency, foF2) using frequency-sweeping radiation from a highly elliptical spacecraft orbit in the Arctic zone. Our modeling concerning the energy problem of radio sensing consisted of analyzing wave field parameters, received field strength, and SNR on two radio paths with the distances 1900 and 2500 km along the earth`s surface, with the satellite height varying from 10,000 to 30,000 km. Radio path orientations were selected to be close to the classical limit cases of radio wave propagation in the anisotropic ionospheric plasma: quasi-longitudinal approximation and, to a large extent, the quasi-transversal one for the quiet midday and midnight conditions. As a result of these simulations and following specific spacecraft conditions, working with an optimal probing signal was proposed for the appropriate emission power for the onboard transmitter. In the inverse problem of radio sounding of an ionized media, common mathematical inaccuracy in foF2 calculated from the transionogram, frequency dependence of the probing signals magneto-ionic group delay, was estimated. Considering and founding a possible realization of the method, physical prerequisites are discussed based on the experimental data of radio waves passing the 16,000 km long radio path for Moscow–Antarctica (UAS Vernadsky).


 
161 viewsCategory: Geology, Physics
 
Remote Sensing, Vol. 13, Pages 4223: Spatiotemporal Variations in Liquid Water Content in a Seasonal Snowpack: Implications for Radar Remote Sensing (Remote Sensing)
Remote Sensing, Vol. 13, Pages 4226: Detecting Low-Intensity Fires in East Asia Using VIIRS Data: An Improved Contextual Algorithm (Remote Sensing)
 
 
blog comments powered by Disqus


MyJournals.org
The latest issues of all your favorite science journals on one page

Username:
Password:

Register | Retrieve

Search:

Physics


Copyright © 2008 - 2024 Indigonet Services B.V.. Contact: Tim Hulsen. Read here our privacy notice.
Other websites of Indigonet Services B.V.: Nieuws Vacatures News Tweets Nachrichten