MyJournals Home  

RSS FeedsIJMS, Vol. 22, Pages 12847: Physiological and Dual Transcriptional Analysis of Microalga Graesiella Emersonii–Amoeboaphelidium Protococcarum Pathosystem Uncovers Conserved Defense Response and Robust Pathogenicity (International Journal of Molecular Sciences)

 
 

27 november 2021 12:00:17

 
IJMS, Vol. 22, Pages 12847: Physiological and Dual Transcriptional Analysis of Microalga Graesiella Emersonii–Amoeboaphelidium Protococcarum Pathosystem Uncovers Conserved Defense Response and Robust Pathogenicity (International Journal of Molecular Sciences)
 


The underlying mechanisms of microalgal host–pathogen interactions remain largely unknown. In this study, we applied physiological and simultaneous dual transcriptomic analysis to characterize the microalga Graesiella emersonii–Amoeboaphelidium protococcarum interaction. Three infection stages were determined according to infection rate and physiological features. Dual RNA-seq results showed that the genes expression of G. emersonii and A. protococcarum were strongly dynamically regulated during the infection. For microalgal hosts, similar to plant defense response, the expression of defense genes involved in the pattern recognition receptors, large heat shock proteins, and reactive oxygen scavenging enzymes (glutathione, ferritin, and catalase) were significantly upregulated during infection. However, some genes encoding resistance proteins (R proteins) with a leucine-rich repeat domain exhibited no significant changes during infection. For endoparasite A. protococcarum, genes for carbohydrate-active enzymes, pathogen–host interactions, and putative effectors were significantly upregulated during infection. Furthermore, the genes in cluster II were significantly enriched in pathways associated with the modulation of vacuole transport, including endocytosis, phagosome, ubiquitin-mediated proteolysis, and SNARE interactions in vesicular transport pathways. These results suggest that G. emersonii has a conserved defense system against pathogen and that endoparasite A. protococcarum possesses a robust pathogenicity to infect the host. Our study characterizes the first transcriptomic profile of microalgae–endoparasite interaction, providing a new promising basis for complete understanding of the algal host defense strategies and parasite pathogenicity.


 
156 viewsCategory: Biochemistry, Biophysics, Molecular Biology
 
IJMS, Vol. 22, Pages 12843: Inhibition of Prostaglandin F2α Receptors Exaggerates HCl-Induced Lung Inflammation in Mice (International Journal of Molecular Sciences)
IJMS, Vol. 22, Pages 12849: The Receptor AT1 Appears to Be Important for the Maintenance of Bone Mass and AT2 Receptor Function in Periodontal Bone Loss Appears to Be Regulated by AT1 Receptor (International Journal of Molecular Sciences)
 
 
blog comments powered by Disqus


MyJournals.org
The latest issues of all your favorite science journals on one page

Username:
Password:

Register | Retrieve

Search:

Molecular Biology


Copyright © 2008 - 2024 Indigonet Services B.V.. Contact: Tim Hulsen. Read here our privacy notice.
Other websites of Indigonet Services B.V.: Nieuws Vacatures News Tweets Nachrichten