MyJournals Home  

RSS FeedsIJMS, Vol. 23, Pages 1263: Chalcogen Bonding in the Molecular Dimers of WCh2 (Ch = S, Se, Te): On the Basic Understanding of the Local Interfacial and Interlayer Bonding Environment in 2D Layered Tungsten Dichalcogenides (International Journal of Molecular Sciences)

 
 

23 january 2022 12:38:53

 
IJMS, Vol. 23, Pages 1263: Chalcogen Bonding in the Molecular Dimers of WCh2 (Ch = S, Se, Te): On the Basic Understanding of the Local Interfacial and Interlayer Bonding Environment in 2D Layered Tungsten Dichalcogenides (International Journal of Molecular Sciences)
 


Layered two-dimensional transition metal dichalcogenides and their heterostructures are of current interest, owing to the diversity of their applications in many areas of materials nanoscience and technologies. With this in mind, we have examined the three molecular dimers of the tungsten dichalcogenide series, (WCh2)2 (Ch = S, Se, Te), using density functional theory to provide insight into which interactions, and their specific characteristics, are responsible for the interfacial/interlayer region in the room temperature 2H phase of WCh2 crystals. Our calculations at various levels of theory suggested that the Te···Te chalcogen bonding in (WTe2)2 is weak, whereas the Se···Se and S···S bonding interactions in (WSe2)2 and (WS2)2, respectively, are of the van der Waals type. The presence and character of Ch···Ch chalcogen bonding interactions in the dimers of (WCh2)2 are examined with a number of theoretical approaches and discussed, including charge-density-based approaches, such as the quantum theory of atoms in molecules, interaction region indicator, independent gradient model, and reduced density gradient non-covalent index approaches. The charge-density-based topological features are shown to be concordant with the results that originate from the extrema of potential on the electrostatic surfaces of WCh2 monomers. A natural bond orbital analysis has enabled us to suggest a number of weak hyperconjugative charge transfer interactions between the interacting monomers that are responsible for the geometry of the (WCh2)2 dimers at equilibrium. In addition to other features, we demonstrate that there is no so-called van der Waals gap between the monolayers in two-dimensional layered transition metal tungsten dichalcogenides, which are gapless, and that the (WCh2)2 dimers may be prototypes for a basic understanding of the physical chemistry of the chemical bonding environments associated with the local interfacial/interlayer regions in layered 2H-WCh2 nanoscale systems.


 
160 viewsCategory: Biochemistry, Biophysics, Molecular Biology
 
IJMS, Vol. 23, Pages 1261: Foliate-Targeting Quantum Dots-β-Cyclodextrin Nanocarrier for Efficient Delivery of Unsymmetrical Bisacridines to Lung and Prostate Cancer Cells (International Journal of Molecular Sciences)
IJMS, Vol. 23, Pages 1264: Metformin and Insulin Resistance: A Review of the Underlying Mechanisms behind Changes in GLUT4-Mediated Glucose Transport (International Journal of Molecular Sciences)
 
 
blog comments powered by Disqus


MyJournals.org
The latest issues of all your favorite science journals on one page

Username:
Password:

Register | Retrieve

Search:

Molecular Biology


Copyright © 2008 - 2024 Indigonet Services B.V.. Contact: Tim Hulsen. Read here our privacy notice.
Other websites of Indigonet Services B.V.: Nieuws Vacatures News Tweets Nachrichten