MyJournals Home  

RSS FeedsIJMS, Vol. 23, Pages 5749: Crosstalk between the Arabidopsis Glutathione Peroxidase-Like 5 Isoenzyme (AtGPXL5) and Ethylene (International Journal of Molecular Sciences)

 
 

20 may 2022 16:40:13

 
IJMS, Vol. 23, Pages 5749: Crosstalk between the Arabidopsis Glutathione Peroxidase-Like 5 Isoenzyme (AtGPXL5) and Ethylene (International Journal of Molecular Sciences)
 


Glutathione peroxidases (GPXs) are important antioxidant enzymes in animals. Plants contain GPX-like (GPXL) enzymes, which—in contrast to GPXs—contain cysteine in their active site instead of selenocysteine. Although several studies proved their importance in development and stress responses, their interaction with ethylene (ET) signalling is not known. Our aim was to investigate the involvement of AtGPXL5 in ET biosynthesis and/or signalling using Atgpxl5 mutant and AtGPXL5 cDNA-overexpressing (OX-AtGPXL5) lines. Four-day-old dark-grown Atgpxl5 seedlings had shorter hypocotyls and primary roots, while OX-AtGPXL5 seedlings exhibited a similar phenotype as wild type under normal conditions. Six-week-old OX-AtGPXL5 plants contained less H2O2 and malondialdehyde, but higher polyamine and similar ascorbate- and glutathione contents and redox potential (EGSH) than the Col-0. One-day treatment with the ET-precursor 1-aminocyclopropane-1-carboxylic acid (ACC) induced the activity of glutathione- and thioredoxin peroxidases and some other ROS-processing enzymes. In the Atgpxl5 mutants, the EGSH became more oxidised; parallelly, it produced more ethylene after the ACC treatment than other genotypes. Although the enhanced ET evolution measured in the Atgpxl5 mutant can be the result of the increased ROS level, the altered expression pattern of ET-related genes both in the Atgpxl5 and OX-AtGPXL5 plants suggests the interplay between AtGPXL5 and ethylene signalling.


 
66 viewsCategory: Biochemistry, Biophysics, Molecular Biology
 
IJMS, Vol. 23, Pages 5754: Establishment of a Landscape of UPL5-Ubiquitinated on Multiple Subcellular Components of Leaf Senescence Cell in Arabidopsis (International Journal of Molecular Sciences)
IJMS, Vol. 23, Pages 5755: Application of CRISPR/CasΦ2 System for Genome Editing in Plants (International Journal of Molecular Sciences)
 
 
blog comments powered by Disqus


MyJournals.org
The latest issues of all your favorite science journals on one page

Username:
Password:

Register | Retrieve

Search:

Molecular Biology


Copyright © 2008 - 2022 Indigonet Services B.V.. Contact: Tim Hulsen. Read here our privacy notice.
Other websites of Indigonet Services B.V.: Nieuws Vacatures News Tweets Nachrichten