MyJournals Home  

RSS FeedsPharmaceuticals, Vol. 15, Pages 635: A Combination of Pharmacophore-Based Virtual Screening, Structure-Based Lead Optimization, and DFT Study for the Identification of S. epidermidis TcaR Inhibitors (Pharmaceuticals)

 
 

21 may 2022 15:18:17

 
Pharmaceuticals, Vol. 15, Pages 635: A Combination of Pharmacophore-Based Virtual Screening, Structure-Based Lead Optimization, and DFT Study for the Identification of S. epidermidis TcaR Inhibitors (Pharmaceuticals)
 


The transcriptional regulator (TcaR) enzyme plays an important role in biofilm formation. Prevention of TcaR-DNA complex formation leads to inhibit the biofilm formation is likely to reveal therapeutic ways for the treatment of bacterial infections. To identify the novel ligands for TcaR and to provide a new idea for drug design, two efficient drug design methods, such as pharmacophore modeling and structure-based drug design, were used for virtual screening of database and lead optimization, respectively. Gemifloxacin (FDA-approved drug) was considered to generate the pharmacophore model for virtual screening of the ZINC database, and five hits, namely ZINC77906236, ZINC09550296, ZINC77906466, ZINC09751390, and ZINC01269201, were identified as novel inhibitors of TcaR with better binding energies. Using structure-based drug design, a set of 7a–7p inhibitors of S. epidermidis were considered, and Mol34 was identified with good binding energy and high fitness score with improved pharmacological properties. The active site residues ARG110, ASN20, HIS42, ASN45, ALA38, VAL63, VAL68, ALA24, VAL43, ILE57, and ARG71 are playing a promising role in inhibition process. In addition, we performed DFT simulations of final hits to understand the electronic properties and their significant role in driving the inhibitor to adopt apposite bioactive conformations in the active site. Conclusively, the newly identified and designed hits from both the methods are promising inhibitors of TcaR, which can hinder biofilm formation.


 
154 viewsCategory: Medicine, Pharmacology
 
Pharmaceuticals, Vol. 15, Pages 634: Safety of Short-Term Treatments with Oral Chloroquine and Hydroxychloroquine in Patients with and without COVID-19: A Systematic Review (Pharmaceuticals)
Pharmaceuticals, Vol. 15, Pages 637: A Robust and Fast/Multiplex Pharmacogenetics Assay to Simultaneously Analyze 17 Clinically Relevant Genetic Polymorphisms in CYP3A4, CYP3A5, CYP1A2, CYP2C9, CYP2C19, CYP2D6, ABCB1, and VKORC1 Genes (Pharmaceuticals)
 
 
blog comments powered by Disqus


MyJournals.org
The latest issues of all your favorite science journals on one page

Username:
Password:

Register | Retrieve

Search:

Pharmacology


Copyright © 2008 - 2024 Indigonet Services B.V.. Contact: Tim Hulsen. Read here our privacy notice.
Other websites of Indigonet Services B.V.: Nieuws Vacatures News Tweets Nachrichten