MyJournals Home  

RSS FeedsRemote Sensing, Vol. 14, Pages 3841: Evolution and Structure of a Dry Microburst Line Observed by Multiple Remote Sensors in a Plateau Airport (Remote Sensing)

 
 

8 august 2022 17:55:38

 
Remote Sensing, Vol. 14, Pages 3841: Evolution and Structure of a Dry Microburst Line Observed by Multiple Remote Sensors in a Plateau Airport (Remote Sensing)
 


The civilian airplane is a common transportation mode for the local people in the Qinghai-Tibet Plateau (QTP). Due to the profound dynamic and thermal effects, the QTP can trigger strong windstorms during the warm season, during which downbursts can cause severe low-level wind shear and threaten aviation safety. However, the study of downbursts over QTP has not been given much attention. This study analyzes and interprets a typical traveling dry microburst line that happened at the Xining Caojiapu International Airport (ZLXN) on 14 May 2020, intending to show a better understanding of the dry downbursts over QTP and explore the synergetic usage of different remote sensing technologies for downburst detection and warning in plateau airports. Specifically, the characteristics of synoptic conditions, the convective system formation process, and the structure and evolution of downbursts and relevant low-level winds are comprehensively investigated. The results show that, under the control of an upstream shallow trough, features of the local atmosphere state, including a dry-adiabatic stratification, a shallow temperature inversion, increases in solar radiation heating, and strong vertical shears of horizontal winds, can be favorable atmospheric prerequisites for the formation and development of dry storms and downbursts. Low-reflectivity storm cells of the Mesoscale Convective System (MCS) organize to form narrow bow echoes, and downbursts show features of radial wind convergences and rapid descending reflectivity cores with hanging virga as observed by a Doppler weather radar. Moreover, details of gales, gust fronts, convergences, turbulences, wind collisions, and outflow interactions triggered by the downburst line are also detected and interpreted by a scanning Doppler wind lidar from different perspectives. In addition, the findings in this work have been compared with the results observed in Denver, U.S., and some simulation studies. Finally, a few conceptual models of low-level wind evolutions influenced by the dry downburst line are given.


 
113 viewsCategory: Geology, Physics
 
Remote Sensing, Vol. 14, Pages 3839: Evaluation of Methods for Estimating Lake Surface Water Temperature Using Landsat 8 (Remote Sensing)
Remote Sensing, Vol. 14, Pages 3840: Orographic Construction of a Numerical Weather Prediction Spectral Model Based on ASTER Data and Its Application to Simulation of the Henan 20·7 Extreme Rainfall Event (Remote Sensing)
 
 
blog comments powered by Disqus


MyJournals.org
The latest issues of all your favorite science journals on one page

Username:
Password:

Register | Retrieve

Search:

Physics


Copyright © 2008 - 2024 Indigonet Services B.V.. Contact: Tim Hulsen. Read here our privacy notice.
Other websites of Indigonet Services B.V.: Nieuws Vacatures News Tweets Nachrichten