MyJournals Home  

RSS FeedsEnergies, Vol. 15, Pages 5776: Well Construction Action Planning and Automation through Finite-Horizon Sequential Decision-Making (Energies)

 
 

9 august 2022 14:08:57

 
Energies, Vol. 15, Pages 5776: Well Construction Action Planning and Automation through Finite-Horizon Sequential Decision-Making (Energies)
 


Well construction operations require continuous complex decision-making and multi-step action planning. Action selection at every step demands a careful evaluation of the vast action space, while guided by long-term objectives and desired outcomes. Current human-centric decision-making introduces a degree of bias, which can result in reactive rather than proactive decisions. This can lead from minor operational inefficiencies all the way to catastrophic health and safety issues. This paper details the steps in structuring unbiased purpose-built sequential decision-making systems. Setting up such systems entails representing the operation as a Markov decision process (MDP). This requires explicitly defining states and action values, defining goal states, building a digital twin to model the process, and appropriately shaping reward functions to measure feedback. The digital twin, in conjunction with the reward function, is utilized for simulating and quantifying the different action sequences. A finite-horizon sequential decision-making system, with discrete state and action space, was set up to advise on hole cleaning during well construction. The state was quantified by the cuttings bed height and the equivalent circulation density values, and the action set was defined using a combination of controllable drilling parameters (including mud density and rheology, drillstring rotation speed, etc.). A non-sparse normalized reward structure was formulated as a function of the state and action values. Hydraulics, cuttings transport, and rig state detection models were integrated to build the hole cleaning digital twin. This system was then used for performance tracking and scenario simulations (with each scenario defined as a finite-horizon action sequence) on real-world oil wells. The different scenarios were compared by monitoring state–action transitions and the evolution of the reward with actions. This paper presents a novel method for setting up well construction operations as long-term finite-horizon sequential decision-making systems, and defines a way to quantify and compare different scenarios. The proper construction of such systems is a crucial step towards automating intelligent decision-making.


 
115 viewsCategory: Biophysics, Biotechnology, Physics
 
Energies, Vol. 15, Pages 5771: Life Cycle Assessment of Dispersed Phase Change Material Heat Accumulators for Cooperation with Buildings in the District Heating System (Energies)
Energies, Vol. 15, Pages 5769: Mitigating Misfire and Fire-through Faults in Hybrid Renewable Energy Systems Utilizing Dynamic Voltage Restorer (Energies)
 
 
blog comments powered by Disqus


MyJournals.org
The latest issues of all your favorite science journals on one page

Username:
Password:

Register | Retrieve

Search:

Physics


Copyright © 2008 - 2024 Indigonet Services B.V.. Contact: Tim Hulsen. Read here our privacy notice.
Other websites of Indigonet Services B.V.: Nieuws Vacatures News Tweets Nachrichten