MyJournals Home  

RSS FeedsMolecules, Vol. 27, Pages 5071: PI3K/mTOR Dual Inhibitor Pictilisib Stably Binds to Site I of Human Serum Albumin as Observed by Computer Simulation, Multispectroscopic, and Microscopic Studies (Molecules)

 
 

9 august 2022 16:22:39

 
Molecules, Vol. 27, Pages 5071: PI3K/mTOR Dual Inhibitor Pictilisib Stably Binds to Site I of Human Serum Albumin as Observed by Computer Simulation, Multispectroscopic, and Microscopic Studies (Molecules)
 


Pictilisib (GDC-0941) is a well-known dual inhibitor of class I PI3K and mTOR and is presently undergoing phase 2 clinical trials for cancer treatment. The present work investigated the dynamic behaviors and interaction mechanism between GDC-0941 and human serum albumin (HSA). Molecular docking and MD trajectory analyses revealed that GDC-0941 bound to HSA and that the binding site was positioned in subdomain IIA at Sudlow’s site I of HSA. The fluorescence intensity of HSA was strongly quenched by GDC-0941, and results showed that the HSA–GDC-0941 interaction was a static process caused by ground-state complex formation. The association constant of the HSA–GDC-0941 complex was approximately 105 M−1, reflecting moderate affinity. Thermodynamic analysis conclusions were identical with MD simulation results, which revealed that van der Waals interactions were the vital forces involved in the binding process. CD, synchronous, and 3D fluorescence spectroscopic results revealed that GDC-0941 induced the structural change in HSA. Moreover, the conformational change of HSA affected its molecular sizes, as evidenced by AFM. This work provides a useful research strategy for exploring the interaction of GDC-0941 with HSA, thus helping in the understanding of the transport and delivery of dual inhibitors in the blood circulation system.


 
126 viewsCategory: Biochemistry, Chemistry, Molecular Biology
 
Molecules, Vol. 27, Pages 5055: Pharmacological Profile, Bioactivities, and Safety of Turmeric Oil (Molecules)
Molecules, Vol. 27, Pages 5072: Chemistry, Biosynthesis and Pharmacology of Viniferin: Potential Resveratrol-Derived Molecules for New Drug Discovery, Development and Therapy (Molecules)
 
 
blog comments powered by Disqus


MyJournals.org
The latest issues of all your favorite science journals on one page

Username:
Password:

Register | Retrieve

Search:

Molecular Biology


Copyright © 2008 - 2024 Indigonet Services B.V.. Contact: Tim Hulsen. Read here our privacy notice.
Other websites of Indigonet Services B.V.: Nieuws Vacatures News Tweets Nachrichten