MyJournals Home  

RSS FeedsEnergies, Vol. 15, Pages 5791: Numerical Investigations of a Non-Uniform Stator Dihedral Design Strategy for a Boundary Layer Ingestion (BLI) Fan (Energies)

 
 

10 august 2022 08:30:32

 
Energies, Vol. 15, Pages 5791: Numerical Investigations of a Non-Uniform Stator Dihedral Design Strategy for a Boundary Layer Ingestion (BLI) Fan (Energies)
 


A distributed propulsion system has the advantage of saving 5–15% fuel burn through ingesting the fuselage boundary layer of an aircraft by fan or compressor. However, due to boundary layer ingestion (BLI), the fan stage will continuously operate under serious inlet distortion. This will lead to a circumferentially non-uniform flow separation distribution on the stator blade suction surface along the annulus, which significantly decreases the fan’s adiabatic efficiency. To solve this problem, a non-uniform stator dihedral design strategy has been developed to explore its potential of improving BLI fan performance. First, the stator full-annulus blade passages were divided into blade dihedral design regions and baseline design regions on the basis of the additional aerodynamic loss distributions caused by BLI inlet distortion. Then, to find the appropriate dihedral design parameters, the full-annulus BLI fan was discretized into several portions according to the rotor blade number and the dihedral design parameter investigations for dihedral depth and dihedral angle were conducted at the portion with the largest inflow distortion through a single-blade-passage computational model. The optimal combinational dihedral design parameter (dihedral depth 0.3, dihedral angle 6 deg) was applied to the blade passages with notable flow loss which were mainly located in the annulus positions from −120 to 60 degrees suffering from inlet distortion, while the blades in the low-loss annulus locations were unchanged. In this way, a non-uniform stator dihedral design scheme was achieved. In the end, the effectiveness of the non-uniform stator dihedral design was validated by analyzing the internal flow fields of the BLI fan. The results show that the stator dihedral design in distorted regions can increase the inlet axial velocity and reduce the aerodynamic load near the blade trailing edge, which are beneficial for suppressing the flow separations and reducing aerodynamic loss. Specifically, compared with the baseline design, the non-uniform stator dihedral design has achieved a reduction of aerodynamic loss of about 7.7%. The fan stage has presented an improvement of adiabatic efficiency of about 0.48% at the redesigned point without sacrificing the total pressure ratio. In the entire operating range, the redesigned fan has also shown a higher adiabatic efficiency than the baseline design with no reduction of the total pressure ratio, which provides a probable guideline for future BLI distortion-tolerant fan design.


 
96 viewsCategory: Biophysics, Biotechnology, Physics
 
Energies, Vol. 15, Pages 5790: Accident Modeling and Analysis of Nuclear Reactors (Energies)
Energies, Vol. 15, Pages 5793: The Implementation Environment for a Digital Technology Platform of Renewable Energy Sources (Energies)
 
 
blog comments powered by Disqus


MyJournals.org
The latest issues of all your favorite science journals on one page

Username:
Password:

Register | Retrieve

Search:

Physics


Copyright © 2008 - 2024 Indigonet Services B.V.. Contact: Tim Hulsen. Read here our privacy notice.
Other websites of Indigonet Services B.V.: Nieuws Vacatures News Tweets Nachrichten