MyJournals Home  

RSS FeedsMolecules, Vol. 27, Pages 5092: Theoretical Study on the High HER/OER Electrocatalytic Activities of 2D GeSi, SnSi, and SnGe Monolayers and Further Improvement by Imposing Biaxial Strain or Doping Heteroatoms (Molecules)

 
 

10 august 2022 14:12:33

 
Molecules, Vol. 27, Pages 5092: Theoretical Study on the High HER/OER Electrocatalytic Activities of 2D GeSi, SnSi, and SnGe Monolayers and Further Improvement by Imposing Biaxial Strain or Doping Heteroatoms (Molecules)
 


Under the DFT calculations, two-dimensional (2D) GeSi, SnSi, and SnGe monolayers, considered as the structural analogues of famous graphene, are confirmed to be dynamically, mechanically and thermodynamically stable, and all of them can also possess good conductivity. Furthermore, we systematically investigate their electrocatalytic activities in overall water splitting. The SnSi monolayer can show good HER catalytic activity, while the SnGe monolayer can display remarkable OER catalytic activity. In particular, the GeSi monolayer can even exhibit excellent bifunctional HER/OER electrocatalytic activities. In addition, applying the biaxial strain or doping heteroatoms (especially P atom) can be regarded as the effective strategies to further improve the HER activities of these three 2D monolayers. The doped GeSi and SnSi systems can usually exhibit higher HER activity than the doped SnGe systems. The correlative catalytic mechanisms are also analyzed. This work could open up a new avenue for the development of non-noble-metal-based HER/OER electrocatalysts.


 
101 viewsCategory: Biochemistry, Chemistry, Molecular Biology
 
Molecules, Vol. 27, Pages 5084: Photoactive Herbal Compounds: A Green Approach to Photodynamic Therapy (Molecules)
Molecules, Vol. 27, Pages 5095: Natural Polyphenols as SERCA Activators: Role in the Endoplasmic Reticulum Stress-Related Diseases (Molecules)
 
 
blog comments powered by Disqus


MyJournals.org
The latest issues of all your favorite science journals on one page

Username:
Password:

Register | Retrieve

Search:

Molecular Biology


Copyright © 2008 - 2024 Indigonet Services B.V.. Contact: Tim Hulsen. Read here our privacy notice.
Other websites of Indigonet Services B.V.: Nieuws Vacatures News Tweets Nachrichten