MyJournals Home  

RSS FeedsIJMS, Vol. 23, Pages 8910: In Vitro Models of Biological Barriers for Nanomedical Research (International Journal of Molecular Sciences)

 
 

10 august 2022 14:49:23

 
IJMS, Vol. 23, Pages 8910: In Vitro Models of Biological Barriers for Nanomedical Research (International Journal of Molecular Sciences)
 


Nanoconstructs developed for biomedical purposes must overcome diverse biological barriers before reaching the target where playing their therapeutic or diagnostic function. In vivo models are very complex and unsuitable to distinguish the roles plaid by the multiple biological barriers on nanoparticle biodistribution and effect; in addition, they are costly, time-consuming and subject to strict ethical regulation. For these reasons, simplified in vitro models are preferred, at least for the earlier phases of the nanoconstruct development. Many in vitro models have therefore been set up. Each model has its own pros and cons: conventional 2D cell cultures are simple and cost-effective, but the information remains limited to single cells; cell monolayers allow the formation of cell–cell junctions and the assessment of nanoparticle translocation across structured barriers but they lack three-dimensionality; 3D cell culture systems are more appropriate to test in vitro nanoparticle biodistribution but they are static; finally, bioreactors and microfluidic devices can mimicking the physiological flow occurring in vivo thus providing in vitro biological barrier models suitable to reliably assess nanoparticles relocation. In this evolving context, the present review provides an overview of the most representative and performing in vitro models of biological barriers set up for nanomedical research.


 
101 viewsCategory: Biochemistry, Biophysics, Molecular Biology
 
IJMS, Vol. 23, Pages 8907: Prevalence of Plasmid-Mediated Quinolone Resistance (PMQRs) Determinants and Whole Genome Sequence Screening of PMQR-Producing E. coli Isolated from Men Undergoing a Transrectal Prostate Biopsy (International Journal of Molecular Sciences)
IJMS, Vol. 23, Pages 8922: Impacts of Glucose-Dependent Insulinotropic Polypeptide on Orthodontic Tooth Movement-Induced Bone Remodeling (International Journal of Molecular Sciences)
 
 
blog comments powered by Disqus


MyJournals.org
The latest issues of all your favorite science journals on one page

Username:
Password:

Register | Retrieve

Search:

Molecular Biology


Copyright © 2008 - 2024 Indigonet Services B.V.. Contact: Tim Hulsen. Read here our privacy notice.
Other websites of Indigonet Services B.V.: Nieuws Vacatures News Tweets Nachrichten