MyJournals Home  

RSS FeedsIJMS, Vol. 23, Pages 8923: High Plasma Levels of Fortilin in Patients with Coronary Artery Disease (International Journal of Molecular Sciences)

 
 

10 august 2022 15:10:17

 
IJMS, Vol. 23, Pages 8923: High Plasma Levels of Fortilin in Patients with Coronary Artery Disease (International Journal of Molecular Sciences)
 


Excessive apoptosis is known to be a common feature of atherosclerotic lesions. Fortilin is recognized to have potent antiapoptotic properties. An increased fortilin expression was demonstrated in atherosclerotic lesions, and fortilin knockout mice developed less atherosclerosis. However, no study has reported blood fortilin levels in patients with coronary artery disease (CAD). We investigated plasma fortilin levels in 384 patients undergoing coronary angiography. CAD severity was evaluated as the numbers of stenotic vessels and segments. CAD was found in 208 patients (one-vessel (1VD), n = 86; two-vessel (2VD), n = 68; and three-vessel disease (3VD), n = 53). Plasma C-reactive protein (CRP) levels were higher in patients with CAD than without CAD (median 0.60 vs. 0.45 mg/L, p < 0.01). Notably, fortilin levels were higher in patients with CAD than without CAD (75.1 vs. 69.7 pg/mL, p < 0.02). A stepwise increase in fortilin was found according to the number of stenotic vessels: 69.7 in CAD(−), 71.1 in 1VD, 75.7 in 2VD, and 84.7 pg/mL in 3VD (p < 0.01). Fortilin levels also correlated with the number of stenotic segments (r = 0.16) and CRP levels (r = 0.24) (p < 0.01). In a multivariate analysis, fortilin levels were independently associated with 3VD. The odds ratio for 3VD was 1.93 (95%CI = 1.01–3.71) for a high fortilin level (>70.0 pg/mL). Thus, plasma fortilin levels in patients with CAD, especially those with 3VD, were found to be high and to be associated with the severity of CAD.


 
102 viewsCategory: Biochemistry, Biophysics, Molecular Biology
 
IJMS, Vol. 23, Pages 8914: Characterization of the SWEET Gene Family in Longan (Dimocarpus longan) and the Role of DlSWEET1 in Cold Tolerance (International Journal of Molecular Sciences)
IJMS, Vol. 23, Pages 8918: Human Umbilical Cord Lining-Derived Epithelial Cells: A Potential Source of Non-Native Epithelial Cells That Accelerate Healing in a Porcine Cutaneous Wound Model (International Journal of Molecular Sciences)
 
 
blog comments powered by Disqus


MyJournals.org
The latest issues of all your favorite science journals on one page

Username:
Password:

Register | Retrieve

Search:

Molecular Biology


Copyright © 2008 - 2024 Indigonet Services B.V.. Contact: Tim Hulsen. Read here our privacy notice.
Other websites of Indigonet Services B.V.: Nieuws Vacatures News Tweets Nachrichten