MyJournals Home  

RSS FeedsIJMS, Vol. 23, Pages 8948: N-Octyl Caffeamide, a Caffeic Acid Amide Derivative, Prevents Progression of Diabetes and Hepatic Steatosis in High-Fat Diet Induced Obese Mice (International Journal of Molecular Sciences)

 
 

11 august 2022 12:25:44

 
IJMS, Vol. 23, Pages 8948: N-Octyl Caffeamide, a Caffeic Acid Amide Derivative, Prevents Progression of Diabetes and Hepatic Steatosis in High-Fat Diet Induced Obese Mice (International Journal of Molecular Sciences)
 


The underlying pathological mechanisms of diabetes are complicated and varied in diabetic patients, which may lead to the current medications often failing to maintain glycemic control in the long term. Thus, the discovery of diverse new compounds for developing medicines to treat diabetes and its complications are urgently needed. Polyphenols are metabolites of plants and have been employed in the prevention and treatment of a variety of diseases. Caffeic acid phenethyl ester (CAPE) is a category of compounds structurally similar to polyphenols. In this study, we aimed to investigate the antidiabetic activity and potential molecular mechanisms of a novel synthetic CAPE derivative N-octyl caffeamide (36M) using high-fat (HF) diet induced obese mouse models. Our results demonstrate that 36M prevented the progression of diabetes in the HF diet fed obese mice via increasing phosphorylation of adenosine monophosphate-activated protein kinase (AMPK) and inhibiting expression of protein tyrosine phosphatase 1B (PTP1B). We also found that 36M could prevent hepatic lipid storage in the HF diet fed mice via inhibition of fatty acid synthase and lipid droplet proteins, including perilipins and Fsp27. In conclusion, 36M is a potential candidate compound that can be developed as AMPK inhibitor and PTP1B inhibitor for treating diabetes and hepatic steatosis.


 
122 viewsCategory: Biochemistry, Biophysics, Molecular Biology
 
IJMS, Vol. 23, Pages 8947: Characterization of Transposon-Derived Accessible Chromatin Regions in Rice (Oryza Sativa) (International Journal of Molecular Sciences)
IJMS, Vol. 23, Pages 8949: Functionalized Nanogels with Endothelin-1 and Bradykinin Receptor Antagonist Peptides Decrease Inflammatory and Cartilage Degradation Markers of Osteoarthritis in a Horse Organoid Model of Cartilage (International Journal of Molecular Sciences)
 
 
blog comments powered by Disqus


MyJournals.org
The latest issues of all your favorite science journals on one page

Username:
Password:

Register | Retrieve

Search:

Molecular Biology


Copyright © 2008 - 2024 Indigonet Services B.V.. Contact: Tim Hulsen. Read here our privacy notice.
Other websites of Indigonet Services B.V.: Nieuws Vacatures News Tweets Nachrichten