MyJournals Home  

RSS FeedsIJMS, Vol. 23, Pages 9065: Cilostazol Attenuates AngII-Induced Cardiac Fibrosis in apoE Deficient Mice (International Journal of Molecular Sciences)

 
 

13 august 2022 11:57:35

 
IJMS, Vol. 23, Pages 9065: Cilostazol Attenuates AngII-Induced Cardiac Fibrosis in apoE Deficient Mice (International Journal of Molecular Sciences)
 


Cardiac fibrosis is characterized by the net accumulation of extracellular matrix in the myocardium and is an integral component of most pathological cardiac conditions. Cilostazol, a selective inhibitor of phosphodiesterase type III with anti-platelet, anti-mitogenic, and vasodilating properties, is widely used to treat the ischemic symptoms of peripheral vascular disease. Here, we investigated whether cilostazol has a protective effect against Angiotensin II (AngII)-induced cardiac fibrosis. Male apolipoprotein E-deficient mice were fed either a normal diet or a diet containing cilostazol (0.1% wt/wt). After 1 week of diet consumption, the mice were infused with saline or AngII (1000 ng kg−1 min−1) for 28 days. AngII infusion increased heart/body weight ratio (p < 0.05), perivascular fibrosis (p < 0.05), and interstitial cardiac fibrosis (p < 0.0001), but were significantly attenuated by cilostazol treatment (p < 0.05, respectively). Cilostazol also reduced AngII-induced increases in fibrotic and inflammatory gene expression (p < 0.05, respectively). Furthermore, cilostazol attenuated both protein and mRNA abundance of osteopontin induced by AngII in vivo. In cultured human cardiac myocytes, cilostazol reduced mRNA expression of AngII-induced osteopontin in dose-dependent manner. This reduction was mimicked by forskolin treatment but was cancelled by co-treatment of H-89. Cilostazol attenuates AngII-induced cardiac fibrosis in mice through activation of the cAMP–PKA pathway.


 
98 viewsCategory: Biochemistry, Biophysics, Molecular Biology
 
IJMS, Vol. 23, Pages 9064: The Key Role of Fatty Acid Synthase in Lipid Metabolism and Metamorphic Development in a Destructive Insect Pest, Spodoptera litura (Lepidoptera: Noctuidae) (International Journal of Molecular Sciences)
IJMS, Vol. 23, Pages 9068: Ethylene Acts as a Local and Systemic Signal to Mediate UV-B-Induced Nitrate Reallocation to Arabidopsis Leaves and Roots via Regulating the ERFs-NRT1.8 Signaling Module (International Journal of Molecular Sciences)
 
 
blog comments powered by Disqus


MyJournals.org
The latest issues of all your favorite science journals on one page

Username:
Password:

Register | Retrieve

Search:

Molecular Biology


Copyright © 2008 - 2024 Indigonet Services B.V.. Contact: Tim Hulsen. Read here our privacy notice.
Other websites of Indigonet Services B.V.: Nieuws Vacatures News Tweets Nachrichten