MyJournals Home  

RSS FeedsMarine Drugs, Vol. 20, Pages 516: In Vitro Antioxidant and Antiaging Activities of Collagen and Its Hydrolysate from Mackerel Scad Skin (Decapterus macarellus) (Marine Drugs)

 
 

13 august 2022 14:27:55

 
Marine Drugs, Vol. 20, Pages 516: In Vitro Antioxidant and Antiaging Activities of Collagen and Its Hydrolysate from Mackerel Scad Skin (Decapterus macarellus) (Marine Drugs)
 


The skin of mackerel scad fish (Decapterus macarellus) is a new source for pepsin-soluble collagen and its hydrolysate, both of which have never been explored. This study aims to characterize and determine the in vitro antioxidant, antiglycation, and antityrosinase activity of pepsin-soluble collagen (PSC) and hydrolyzed collagen (HC) from mackerel scad skin. PSC was extracted using 0.5 M acetic acid containing 0.1% pepsin for 48 h at 4 °C. The obtained PSC was then hydrolyzed with collagenase type II (6250 U/g) to produce HC. The PSC yield obtained was 6.39 ± 0.97%, with a pH of 6.76 ± 0.18, while the HC yield was 96% from PSC. SDS-PAGE and Fourier Transform Infrared (FTIR) analysis showed the typical features of type I collagen. HC demonstrated high solubility (66.75–100%) throughout the entire pH range (1–10). The PSC and HC from mackerel scad skin showed antioxidant activity against 2,2-diphenyl-1-picrylhydrazyl (DPPH), with IC50 values of 148.55 ± 3.14 ppm and 34.966 ± 0.518 ppm, respectively. In the antiglycation test, PSC had an IC50 value of 239.29 ± 15.67 ppm, while HC had an IC50 of 68.43 ± 0.44 ppm. PSC also exhibited antityrosinase activity, with IC50 values of 234.66 ± 0.185 ppm (on the L-DOPA substrate), while HC had an IC50 value of 79.35 ± 0.5 ppm. Taken together, these results suggest that the skin of mackerel scad fish has potential antiaging properties and can be further developed for pharmaceutical and cosmetic purposes.


 
134 viewsCategory: Biochemistry, Molecular Biology, Pharmacology
 
Marine Drugs, Vol. 20, Pages 515: Novel Labdane Diterpenes-Based Synthetic Derivatives: Identification of a Bifunctional Vasodilator That Inhibits CaV1.2 and Stimulates KCa1.1 Channels (Marine Drugs)
Marine Drugs, Vol. 20, Pages 517: Novel β-Hairpin Peptide from Marine Polychaeta with a High Efficacy against Gram-Negative Pathogens (Marine Drugs)
 
 
blog comments powered by Disqus


MyJournals.org
The latest issues of all your favorite science journals on one page

Username:
Password:

Register | Retrieve

Search:

Pharmacology


Copyright © 2008 - 2024 Indigonet Services B.V.. Contact: Tim Hulsen. Read here our privacy notice.
Other websites of Indigonet Services B.V.: Nieuws Vacatures News Tweets Nachrichten