MyJournals Home  

RSS FeedsRemote Sensing, Vol. 14, Pages 4788: Sensitivity Analysis of 1,3-Butadiene Monitoring Based on Space-Based Detection in the Infrared Band (Remote Sensing)

 
 

25 september 2022 11:04:39

 
Remote Sensing, Vol. 14, Pages 4788: Sensitivity Analysis of 1,3-Butadiene Monitoring Based on Space-Based Detection in the Infrared Band (Remote Sensing)
 


The monitoring of the Volatile Organic Compounds (VOCs) in the atmosphere is of great significance for reducing chemical pollution, warning of fires, and improving air quality. Among the VOCs, 1,3-butadiene is essential to monitor as a carcinogenic environmental pollutant. The space-based detection of 1,3-butadiene was made possible by recently development of infrared detection satellites and advances in spectroscopic techniques. In this work, based on the demand for space-based infrared detection of 1,3-butadiene, a modeling method of Earth background radiance characteristics coupled with remote sensing data and physical model is proposed, which can effectively simulate the Earth background radiance field distribution under any atmospheric conditions. Specifically, infrared spectral radiance of 1,3-butadiene was simulated from absorption cross-section data. Further, combined with the radiative transfer model and atmospheric profiles of satellite sensor data, such as temperature, pressure, and H2O and O3 mixing ratio, the atmospheric transmittance and atmospheric background radiance are simulated. Finally, infrared space-based detection of 1,3-butadiene is simulated by coupling Earth background radiance and the detectability is analyzed and discussed by using signal-to-clutter ratio (SCR). The results show that 1,3-butadiene has an absorption effect in space-based infrared detection. The detectability of the narrow band 9.8–10.0 μm and 10.9–11.1 μm is better than that of the wide band 9.0–12.0 μm, and 10.9–11.1 μm is a better detection band for 1,3-butadiene than other bands. This paper provides a method for the space-based infrared detection of 1,3-butadiene. It also provides a reference for selecting the appropriate band for the detector.


 
82 viewsCategory: Geology, Physics
 
Remote Sensing, Vol. 14, Pages 4786: Estimating Crop Seed Composition Using Machine Learning from Multisensory UAV Data (Remote Sensing)
Remote Sensing, Vol. 14, Pages 4787: The Effects of Rainfall on Over-the-Horizon Propagation in the Evaporation Duct over the South China Sea (Remote Sensing)
 
 
blog comments powered by Disqus


MyJournals.org
The latest issues of all your favorite science journals on one page

Username:
Password:

Register | Retrieve

Search:

Physics


Copyright © 2008 - 2024 Indigonet Services B.V.. Contact: Tim Hulsen. Read here our privacy notice.
Other websites of Indigonet Services B.V.: Nieuws Vacatures News Tweets Nachrichten