MyJournals Home  

RSS FeedsMolecules, Vol. 27, Pages 6331: Keratin-Based Composite Bioactive Films and Their Preservative Effects on Cherry Tomato (Molecules)

 
 

26 september 2022 12:26:12

 
Molecules, Vol. 27, Pages 6331: Keratin-Based Composite Bioactive Films and Their Preservative Effects on Cherry Tomato (Molecules)
 


In this study, keratins were extracted from pig nail waste through the reduction method using L-cysteine as a reductant. Curcumin was successively incorporated in a mixed solution including keratin, gelatin, and glycerin to prepare different kinds of keratin/gelatin/glycerin/curcumin composite films. The morphology of the keratin/ gelatin/glycerin/curcumin composite films were examined using scanning electron microscopy. The structures and the molecular interactions between curcumin, keratin, and pectin were examined using Fourier transform infrared spectroscopy and X-ray diffraction, and the thermal properties were determined through thermogravimetric analysis. The tensile strengths of keratin/gelatin/glycerin/curcumin and keratin/gelatin/curcumin composite films are 13.73 and 12.45 MPa, respectively, and their respective elongations at break are 56.7% and 4.6%. In addition, compared with the control group (no film wrapped on the surface of tomato), the ratio of weight loss of the keratin (7.0%)/gelatin (10%)/glycerin (2.0%)/curcumin (1.0%) experimental groups is 8.76 ± 0.2%, and the hardness value of the tomatoes wrapped with composite films is 11.2 ± 0.39 kg/cm3. Finally, the composite films have a superior antibacterial effect against Staphylococcus aureus and Escherichia coli because of the addition of curcumin. As the concentration of curcumin reaches 1.0%, the antibacterial activity effect of the film is significantly improved. The diameter of the inhibition zone of E. coli is (12.16 ± 0.53) mm, and that of S. aureus is (14.532 ± 0.97) mm. The multifunctional keratin/gelatin/glycerin/curcumin bioactive films have great potential application in the food packaging industry.


 
83 viewsCategory: Biochemistry, Chemistry, Molecular Biology
 
Molecules, Vol. 27, Pages 6333: A Novel 5-Chloro-N-phenyl-1H-indole-2-carboxamide Derivative as Brain-Type Glycogen Phosphorylase Inhibitor: Potential Therapeutic Effect on Cerebral Ischemia (Molecules)
Molecules, Vol. 27, Pages 6334: Screening of Humic Substances Extracted from Leonardite for Free Radical Scavenging Activity Using DPPH Method (Molecules)
 
 
blog comments powered by Disqus


MyJournals.org
The latest issues of all your favorite science journals on one page

Username:
Password:

Register | Retrieve

Search:

Molecular Biology


Copyright © 2008 - 2024 Indigonet Services B.V.. Contact: Tim Hulsen. Read here our privacy notice.
Other websites of Indigonet Services B.V.: Nieuws Vacatures News Tweets Nachrichten