MyJournals Home  

RSS FeedsRemote Sensing, Vol. 14, Pages 4799: Spatio-Temporal Dynamics and Driving Forces of Multi-Scale CO2 Emissions by Integrating DMSP-OLS and NPP-VIIRS Data: A Case Study in Beijing-Tianjin-Hebei, China (Remote Sensing)

 
 

26 september 2022 14:38:15

 
Remote Sensing, Vol. 14, Pages 4799: Spatio-Temporal Dynamics and Driving Forces of Multi-Scale CO2 Emissions by Integrating DMSP-OLS and NPP-VIIRS Data: A Case Study in Beijing-Tianjin-Hebei, China (Remote Sensing)
 


The emission of greenhouse gases, especially CO2, is the main factor causing global warming. Due to incomplete statistical data on energy consumption at and below the urban scale of Beijing-Tianjin-Hebei (BTH), in this study, Defense Meteorological Satellite Program Operational Linescan System (DMSP-OLS) and Suomi National Polar-orbiting Partnership Visible Infrared Imaging Radiometer Suite (NPP-VIIRS) data were combined, and a neural network model and weighted average method based on DN (Digital Number) value were used to obtain CO2 emissions at the municipal and county scales with a resolution of 1 km × 1 km from 2000–2019. Next, a spatial-temporal analysis model and spatial econometric model were used to study the CO2 emissions at different scales of BTH. This study also solved the problem that STIRPAT analysis cannot be carried out due to insufficient urban statistical CO2 emissions data. The results show that the energy CO2 emissions in BTH present a distribution pattern of “East greater than West”, with a trend of first rising and then slowing down. Moreover, the rapid growth areas are mainly located in Chengde and Tianjin. The degree of regional spatial aggregation decreased year by year from 2000–2019. Population, affluence and technology factors were positively correlated with CO2 emissions in Tianjin and Hebei. For Beijing, in addition to foreign investment, factors such as urbanization rate, energy intensity, construction and transportation factors all contributed to the increase in CO2 emissions. Among them, the growth of population is the main reason for the increase of CO2 at the urban scale in BTH. Finally, based on the research results and the specific situation of the cities, corresponding policies and measures are proposed for the future low-carbon development of the cities.


 
104 viewsCategory: Geology, Physics
 
Remote Sensing, Vol. 14, Pages 4802: Salt Stockpile Inventory Management Using LiDAR Volumetric Measurements (Remote Sensing)
Remote Sensing, Vol. 14, Pages 4804: An Improved Source Model of the 2021 Mw 6.1 Yangbi Earthquake (Southwest China) Based on InSAR and BOI Datasets (Remote Sensing)
 
 
blog comments powered by Disqus


MyJournals.org
The latest issues of all your favorite science journals on one page

Username:
Password:

Register | Retrieve

Search:

Physics


Copyright © 2008 - 2024 Indigonet Services B.V.. Contact: Tim Hulsen. Read here our privacy notice.
Other websites of Indigonet Services B.V.: Nieuws Vacatures News Tweets Nachrichten