MyJournals Home  

RSS FeedsRemote Sensing, Vol. 14, Pages 4819: A New Optimal Subset Selection Method of Partial Ambiguity Resolution for Precise Point Positioning (Remote Sensing)

 
 

27 september 2022 13:21:11

 
Remote Sensing, Vol. 14, Pages 4819: A New Optimal Subset Selection Method of Partial Ambiguity Resolution for Precise Point Positioning (Remote Sensing)
 


Rapid and accurate ambiguity resolution is the core of high-precision precise point positioning (PPP) data processing. However, the ambiguity parameters in PPP observation models are easily affected by atmospheric residual and gross errors, which lead to the probability of successfully fixing decreases and computational burden increases in full ambiguity resolution. Therefore, an increasing number of partial ambiguity resolution (PAR) strategies have been proposed. The selection of the optimal subset of PAR is crucial in this method. The traditional optimal subset selection method of PAR commonly leads to a single judgment criterion and weakened geometric configuration strength because the satellites with low elevation angles are often easily eliminated during the optimal subset selection. In this paper, a multi-factor constrained optimal subset selection method for PAR was proposed, which incorporates the ambiguity variance, the ambiguity dilution of precision (ADOP), satellite position dilution of precision (PDOP) and ratio test values. In order to verify the feasibility of the proposed optimal subset selection method, PAR tests under two schemes were performed for GPS/Galileo based on the static observation data of 15 Multi-GNSS Experiment (MGEX) tracking stations. The results show that, compared with the ambiguity variance sorting method, the proposed subset selection method can further improve the accuracy of the coordinate solution and the strength of geometric figure positioning. The average root mean square of the coordinate residuals is found to decrease by about 12.90%, 6.83% and 9.39% in the eastern, northern and vertical directions, respectively. The increase in the fixed epoch rate ranged from 0.87% to 33.33%, with an average of about 8.71%.


 
80 viewsCategory: Geology, Physics
 
Remote Sensing, Vol. 14, Pages 4818: Remote Sensing Analysis of Geologic Hazards (Remote Sensing)
Remote Sensing, Vol. 14, Pages 4820: Semantics-and-Primitives-Guided Indoor 3D Reconstruction from Point Clouds (Remote Sensing)
 
 
blog comments powered by Disqus


MyJournals.org
The latest issues of all your favorite science journals on one page

Username:
Password:

Register | Retrieve

Search:

Physics


Copyright © 2008 - 2024 Indigonet Services B.V.. Contact: Tim Hulsen. Read here our privacy notice.
Other websites of Indigonet Services B.V.: Nieuws Vacatures News Tweets Nachrichten